Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real VIGAS EN CELOSÍA.


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real VIGAS EN CELOSÍA."

Transcripción

1 VIGAS EN CELOSÍA. 1. Introducción. Cuando necesitamos salvar luces importantes (a partir de m por ejemplo), o necesitamos tener vigas de cantos importantes, puede resultar más económico utilizar estructuras reticulares en celosía que vigas de alma llena. La condición fundamental que debe cumplir una estructura de celosía es la de ser geométricamente indeformable. Como un punto en un plano queda determinado por el triángulo que le une a otros dos, el triángulo es el elemento fundamental de una celosía indeformable. De ahí el nombre de estructuras trianguladas. Suelen diseñarse con nudos articulados. Algunos ejemplos de estructuras trianguladas son: 1

2 Cuando una estructura reticular es geométricamente deformable, sólo puede utilizarse como elemento resistente si las barras que la componen están unidas mediante empotramientos rígidos. Un ejemplo de este caso es la viga "Vierendel". en Las estructuras en celosía pueden dividirse desde el punto de vista de los apoyos - Vigas exteriormente isostáticas. Un ejemplo es la viga tipo Pratt de la figura siguiente 2

3 - Vigas exteriormente hiperestáticas. Si la viga anterior la soportamos en tres apoyos se convierte en exteriormente hiperestáticas. Este tipo de vigas tienen varios inconvenientes: mayor dificultad en el cálculo, mayor exigencia de precisión en la nivelación durante el montaje y la posibilidad de aparición de tensiones adicionales en caso de producirse asientos diferenciales en los apoyos. Desde el punto de vista de la triangulación interior, las vigas en celosía pueden también dividirse en isostáticas e hiperestáticas. Una viga es internamente isostática cuando tiene el número imprescindible de barras. En cuanto aparecen barras superfluas la viga se convierte en interiormente hiperestática. Un ejemplo de este último caso es la celosía en Cruz de San Andrés. En las vigas en celosía las barras se denominan, según su posición, del siguiente modo: 3

4 Cordón superior: conjunto de elementos que forman la cabeza superior (se denomina "par" en las cerchas). Cordón inferior: conjunto de elementos que forman la cabeza inferior (se denomina "tirante" en las cerchas por trabajar usualmente a tracción). Montantes: barras verticales dispuesta en el alma de la viga. Diagonales: barras inclinadas dispuestas en el alma de la viga. 2. Principios básicos de cálculo de las celosías indeformables. El cálculo simplificado de celosías triangulares (el más utilizado por otra parte) se rige por varios principios simplificatorios, aunque sobradamente sancionados por la experiencia. 1. Los ejes (líneas de centros de gravedad) de los perfiles que concurren en un nudo deben pasar por un mismo punto. Si por errores o por necesidades de montaje esto no fuera así, sería necesario comprobar los esfuerzos secundarios que resultasen. 4

5 En la figura puede comprobarse como existe un momento descompensado de valor M = F OB F3 4 OA 2. Las cargas deben estar contenidas en el plano de la viga. 3. La colocación de los perfiles debe ser simétrica respecto al plano de la cercha. Esta condición resulta fácil de cumplir utilizando dos perfiles simétricos para cada cordón. A veces, en barras poco cargadas, se recurre al uso de perfiles simples, pero este tipo de soluciones exige más mano de obra en el montaje y además pueden aparecer problemas de pandeo por flexión-torsión. 4. Las cargas deben estar aplicadas en los nudos. Los métodos de cálculo más usados (Cremona) requieren esta condición. Como no siempre puede construirse así, en la práctica podemos sustituir las cargas que actúan en puntos intermedios por sus reacciones en los nudos: 5

6 En la figura anterior, los valores de las cargas en los nudos son: b P 1 = P ; y a + b a P 2 = P a + b Tras el cálculo de los esfuerzos de tracción o compresión que soporta la barra, deberemos dimensionarla a flexotracción o flexocompresión, puesto que la barra, además, está solicitada por el momento flector producido por la carga P. 5. El cálculo se realiza como si todos los nudos fuesen articulados y se desprecia la variación de la longitud de las barras. Esto supone que en ángulo que forman las barras puede variar líbremente. En la práctica, realmente los nudos se construyen como nudos rígidos o al menos parcialmente rígidos, por efecto de las soldaduras o de otros medios de unión. El efecto inmediato es que aparecen momentos secundarios en las barras de la estructura. Éstas, además del efecto principal de tracción o compresión, deben soportar la flexión provocada por esos momentos secundarios. Los momentos secundarios provocan una tensión secundaria que se sumará a la tensión principal. La cuantía de esta tensión no suele ser excesiva; en vigas normales (barras delgadas y uniones no excesivas, por ejemplo 1/6 de la longitud de la barra), con nudos diseñados con cartelas pequeñas, barras con ejes coincidentes en un punto, etc, no supera el 10% de la tensión principal. 6

7 Casi siempre resulta más práctico reducir un 10% la tensión admisible del acero que calcular estas tensiones secundarias. 3. Utilización de las celosías. Arriostramientos en naves. Arriostramientos en edificios. 7

8 8

9 Vigas para luces importantes. 9

10 Cerchas formando cubiertas. Celosías espaciales. 10

11 Detalles constructivos y apoyos de cerchas. 11

12 4. Calculo gráfico de esfuerzos en barras. Método de Cremona. El método de Cremona se basa en la construcción de los polígonos de fuerzas en cada nudo de la barra (polígono funicular). Cuando en un nudo en el que concurren varias fuerzas desconocemos sólo dos y están en posición consecutiva, podemos construir gráficamente un polígono de fuerzas en el que determinemos el valor de las dos que son desconocidas. Para ello iremos representando los vectores fuerza a escala en un gráfico. El sentido en el que las iremos representado será el de las agujas del reloj, y comenzamos por la primera conocida. En la siguiente figura representamos un nudo en el que concurren cuatro fuerzas de las que nosotros conocemos sólo dos, pero sí sabemos la dirección de las otras dos. Construiremos el polígono de fuerzas comenzando por la fuerza 1 y a continuación la fuerza 2. Sabemos que para que el nudo esté en equilibrio el polígono de fuerzas debe cerrarse. La fuerza 3 debe pasar por el final de la fuerza 2, y la fuerza 4 por el principio de la fuerza 1. El punto de intersección de las rectas paralelas a 3 y a 4 será el fin de la fuerza 3 y el origen de la fuerza 4. En una celosía real calcularemos los esfuerzos en todas las barras construyendo los polígonos de fuerzas de cada uno de los nudos. Debemos empezar por calcular las reacciones. Podemos hacerlos analíticamente F = 0; M 0 ), o bien gráficamente (Nudo I en la siguiente figura). ( = 12

13 Posteriormente dibujaremos a escala los polígonos funiculares de todos los nudos. Debemos comenzar por los nudos en los que sólo desconozcamos dos fuerzas. Normalmente estos nudos serán los de los apoyos. El diagrama de Cremona es la representación en un mismo dibujo de los polígonos de fuerzas de los distintos nudos de una celosía. Debemos cuidar dos aspectos importantes: Escala de las fuerzas: debemos elegir y mantener en todo el Cremona una escala gráfica de fuerzas (x kp = y cm). Las fuerzas deben ser perfectamente paralelas a las barras de la celosía. 13

14 El sentido de las fuerzas nos indicará si la barra en cuestión trabaja a tracción o a compresión. Si la fuerza se aleja del nudo, la barra trabajará a tracción. Si la fuerza se acerca al nudo la barra trabajará a compresión. En la figura anterior la barra 3 trabaja a tracción y la barra 1 a compresión. Ejemplos de Diagramas de Cremona. Viga Pratt 14

15 Viga tipo Inglés. Viga tipo Alemán. 15

16 Cercha tipo Warren. 16

17 Polanceau Compuesta. 17

18 Polanceau Sencilla Cercha con dos voladizos 18

19 Celosía a una agua en ménsula Celosía a un agua en ménsula sin apoyo intermedio. 19

20 Tipología de ménsulas. 20

21 Diente de sierra. Cercha inglesa. 21

22 Celosía en arco para grandes luces. 22

23 Celosía Mansarda. Tipología de vigas y arcos. 23

24 5. Calculo analítico de esfuerzos en barras. Método de Ritter. En ocasiones no podremos resolver estructuras utilizando exclusivamente el método de Cremona. Un ejemplo es la viga Polanceau. En estos casos podremos utilizar el método analítico (de Ritter por ejemplo) para determinar los esfuerzos en las barras que precisemos para poder seguir con el Cremona. ( 3 a + 2 a a) S h = R A 4 a P + R A = 3.5 P 8 P a S = h El método de Ritter consiste básicamente en cortar la celosía por alguna sección en la que desconozcamos tres barras que concurran dos a dos en dos puntos. Sustituiremos las barras que cortamos por los esfuerzos internos que realizan. A partir de ahí estableceremos los equilibrios de momentos en la celosía nos queda tras el corte, y determinaremos los esfuerzos de las barras por las que hemos cortado. Deberemos tomar momentos con respecto a los nudos en que cortan dos de las tres fuerzas que tenemos como incógnitas. De ahí obtendremos ecuaciones con una sola incógnita. En el anterior esquema tomamos momentos con respecto al punto 2 y así calculamos la fuerza S. 24

25 Para el dimensionado de vigas tipo Pratt podemos utilizar el siguiente cuadro: Se basa en las siguientes consideraciones: 25

26 M C = Máxima compresión del cordón superior h C 2 = F 1 Compresión del montante F T D = Tracción en las diagonales sen α M F T i = h tgα Los cordones superior e inferior se encargan fundamentalmente de resistir el Momento Flector. Al estar el flector máximo en el centro del vano, las barras más solicitadas son las situadas hacia la mitad de la viga Los máximos cortantes los tendremos en los apoyos de la viga, y las barras encargadas de resistirlo serán los montantes y diagonales. 26

27 6. Comprobación de la flecha de las celosías de cordones paralelos. 27

28 7. Tabla resumen de las celosías. 28

Estructuras Metálicas

Estructuras Metálicas Estructuras Metálicas I. Medios de unión II. Elementos compuestos III. Ejecución de nudos y apoyos IV. Estructuras reticulares (armaduras) V. Naves industriales Estructuras Metálicas I. Medios de unión

Más detalles

Tema 11:Vigas, pilares y pórticos

Tema 11:Vigas, pilares y pórticos Tema 11:Vigas, pilares y pórticos 1. Vigas. El trabajo a flexión: canto y rigidez. 2. Pilares. El trabajo a compresión y el Pandeo. 3. Uniones de elementos estructurales lineales: nudos. 4. El pórtico

Más detalles

ANEJO 7: CÁLCULOS CONSTRUCTIVOS DE LA SALA DE CALDERAS

ANEJO 7: CÁLCULOS CONSTRUCTIVOS DE LA SALA DE CALDERAS ANEJO 7: CÁLCULOS CONSTRUCTIVOS DE LA SALA DE CALDERAS ANEJO 7: CÁLCULOS CONSTRUCTIVOS DE LA SALA DE CALDERAS. 1. Consideraciones previas.. Cálculo de las correas. 3. Cálculo de la cercha. Cálculo del

Más detalles

**********************************************************************

********************************************************************** 1..- a) Dimensionar la sección de la viga sabiendo que está compuesta por dos tablones dispuestos como se indica en la figura (se trata de hallar a). Tensión admisible de la madera: σ adm, tracción = 50

Más detalles

UNIDAD DIDÁCTICA I: RESISTENCIA DE MATERIALES

UNIDAD DIDÁCTICA I: RESISTENCIA DE MATERIALES Curso: 2003/04 Centro: ESCUELA POLITÉCNICA SUPERIOR Estudios: I.T.A. EXPLOTACIONES AGROPECUARIAS, HOTROFRUTICULTURA Y JARDINERÍA, E INDUSTRIAS AGRARIAS Y ALIMENTARIAS Asignatura: CONSTRUCCIONES AGRARIAS

Más detalles

RESOLUCION DE ESTRUCTURAS POR EL METODO DE LAS DEFORMACIONES

RESOLUCION DE ESTRUCTURAS POR EL METODO DE LAS DEFORMACIONES Facultad de Ingeniería Universidad Nacional de La Plata ESTRUCTURS III RESOLUCION DE ESTRUCTURS POR EL METODO DE LS DEFORMCIONES utor: Ing. Juan P. Durruty RESOLUCION DE ESTRUCTURS POR EL METODO DE LS

Más detalles

Ejemplo nueve. Introducción a las Estructuras - Jorge Bernal. Se pide: Secuencia del estudio: Diseño general. Libro: Capítulo doce - Ejemplo 9

Ejemplo nueve. Introducción a las Estructuras - Jorge Bernal. Se pide: Secuencia del estudio: Diseño general. Libro: Capítulo doce - Ejemplo 9 Archivo: ie cap 12 ejem 09 Ejemplo nueve. Se pide: Dimensionar la estructura soporte del tinglado de la figura. Se analizan las solicitaciones actuantes en las correas, cabriadas, vigas y columnas, para

Más detalles

ARRIOSTRAMIENTOS - 1 -

ARRIOSTRAMIENTOS - 1 - 1. DE EDIFICIOS INDUSTRIALES Los arriostramientos se consideran habitualmente elementos secundarios en las estructuras, sin embargo conviene no prescindir de ellos para que el comportamiento del conjunto

Más detalles

STEEL BUILDINGS IN EUROPE. Edificios de acero de una sola planta Parte 5: Diseño detallado de celosías

STEEL BUILDINGS IN EUROPE. Edificios de acero de una sola planta Parte 5: Diseño detallado de celosías STEEL BUILDINGS IN EUROPE Edificios de acero de una sola planta Parte 5: Diseño detallado de celosías Edificios de acero de una sola planta Parte 5: Diseño detallado de celosías 5 - ii Parte 5: Diseño

Más detalles

I.- ELEMENTOS EN UNA ESTRUCTURA METÁLICA DE TIPO INDUSTRIAL

I.- ELEMENTOS EN UNA ESTRUCTURA METÁLICA DE TIPO INDUSTRIAL I.- ELEMENTOS EN UNA ESTRUCTURA METÁLICA DE TIPO INDUSTRIAL I.1.- Elementos que componen una estructura metálica de tipo industrial. Una estructura de tipo industrial está compuesta (Fig. I.1) por marcos

Más detalles

Objetivos docentes del Tema 8:

Objetivos docentes del Tema 8: Tema 8:Sistemas estructurales 1. Las acciones mecánicas. Estabilidad y Resistencia. 2. Transmisión de cargas gravitatorias y horizontales. 3. Deformación de la estructura y movimientos del edificio. 4.

Más detalles

APUNTES CURSO DE APEOS II

APUNTES CURSO DE APEOS II APUNTES CURSO DE APEOS II FORMADOR CÉSAR CANO ALMON Ingeniero de Edificación Barcelona, 15 de marzo de 2013 ÍNDICE CONTENIDO DEL CURSO 1. INTRODUCCIÓN 2. ANÁLISIS DEL MODELO DE CÁLCULO ESTRUCTURAL 3. COMPROBACIONES

Más detalles

CÁLCULO DE ELEMENTOS MÓVILES EN SOPORTES DE PLÁSTICO

CÁLCULO DE ELEMENTOS MÓVILES EN SOPORTES DE PLÁSTICO CÁLCULO DE ELEMENTOS MÓVILES EN SOPORTES DE PLÁSTICO Por Ernesto Avedillo El presente estudio tiene por objetivo realizar los cálculos necesarios para conocer los esfuerzos y deformaciones a los que se

Más detalles

SISTEMAS ESTRUCTURALES

SISTEMAS ESTRUCTURALES SISTEMAS ESTRUCTURALES ESTRUCTURA: (RAE) Distribución y orden de las partes importantes de un edificio. ESTRUCTURA: (Leupen, B. Proyecto y Análisis) Las partes de un edificio que reciben las cargas del

Más detalles

obprbiqlp=`lk=bi=`qb=

obprbiqlp=`lk=bi=`qb= bpqor`qro^p=jbqžif`^p= fåöéåáéê ~=q ÅåáÅ~=ÇÉ=lÄê~ë=m ÄäáÅ~ë= fåöéåáéê ~=déçäμöáå~= = mol_ibj^p= ab=bu^jbk=s= obprbiqlp=`lk=bi=`qb= = `ìêëç=ommvlnm= = = = = = bä~äçê~ççë=éçê=äçë=éêçñéëçêéëw= = iìáë=_~ μå=_ä

Más detalles

6 Hiperestáticas. Aprender a formular los sistemas de ecuaciones algebraicas que conducen a resolver un problema hiperestático

6 Hiperestáticas. Aprender a formular los sistemas de ecuaciones algebraicas que conducen a resolver un problema hiperestático 6 Hiperestáticas 6.0 Objetivos y contenido Objetivos Contenido Generales: Entender qué es el hiperestatismo, cómo evaluar su grado, cuáles son sus manifestaciones o consecuencias, sus ventajas y sus inconvenientes.

Más detalles

mol_ibj^p= ab=bu^jbk=fff=

mol_ibj^p= ab=bu^jbk=fff= bpqor`qro^p=jbqžif`^p= fåöéåáéê ~=q ÅåáÅ~=ÇÉ=lÄê~ë=m ÄäáÅ~ë= fåöéåáéê ~=déçäμöáå~= = mol_ibj^p= ab=bu^jbk=fff= obprbiqlp=`lk=bi=`qb= = `ìêëç=ommrlomms=eb^jvrf=ó=ommslommt=e`qbf= = = = = = = bä~äçê~ççë=éçê=äçë=éêçñéëçêéëw=

Más detalles

Palabras-clave: Estados Límites; Flexión; Ductilidad; Esfuerzo Cortante.

Palabras-clave: Estados Límites; Flexión; Ductilidad; Esfuerzo Cortante. Francisco Aguirre 1 & Álvaro Moscoso 2 Este estudio comprende el ensayo de 2 vigas de Hormigón Armado a flexión. Los resultados obtenidos son comparados con los fundamentos teóricos del comportamiento

Más detalles

obprbiqlp=`lk=bi=`qb=

obprbiqlp=`lk=bi=`qb= bpqor`qro^p=jbqžif`^p= fåöéåáéê ~=q ÅåáÅ~=ÇÉ=lÄê~ë=m ÄäáÅ~ë= fåöéåáéê ~=déçäμöáå~= = mol_ibj^p= ab=bu^jbk=fs= obprbiqlp=`lk=bi=`qb= = `ìêëçë=ommtlmu=ó=ommulmv= = = = = = bä~äçê~ççë=éçê=äçë=éêçñéëçêéëw=

Más detalles

Tipología de uniones entre elementos estructurales. Tema 3 TIPOLOGIA DE UNIONES ENTRE ELEMENTOS ESTRUCTURALES

Tipología de uniones entre elementos estructurales. Tema 3 TIPOLOGIA DE UNIONES ENTRE ELEMENTOS ESTRUCTURALES Tema 3 TIPOLOGIA DE UNIONES ENTRE ELEMENTOS ESTRUCTURALES. GENERALIDADES Sin duda, la parte de uniones es la que tiene un tratamiento menos importante en la normativa española, tanto desde el punto de

Más detalles

Págs. 1 / 6 OBJETIVOS

Págs. 1 / 6 OBJETIVOS 1 / 6 PROGRAMA DE LA ASIGNATURA: ANÁLISIS DE ESTRUCTURAS Y HORMIGON ARMADO CURSO: 3º TIPO: OBLIGATORIA - Nº CRÉDITOS: 9 (6 T+3 P) 6 HORAS/SEMANA PLAN DE ESTUDIOS: ARQUITECTURA TÉCNICA (BOE 18 DE FEBRERO

Más detalles

Identificación de los Sistemas Estructurales Básicos

Identificación de los Sistemas Estructurales Básicos Identificación de los Sistemas Estructurales Básicos Introducción Se define como estructura a los cuerpos capaces de resistir cargas sin que exista una deformación excesiva de una de las partes con respecto

Más detalles

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3). SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el

Más detalles

Caja Castilla La Mancha CCM

Caja Castilla La Mancha CCM CCM Caja Castilla La Mancha .INTRODUCCION El hormigón armado es un material compuesto que surge de la unión de hormigón en masa con armadura de acero, con el fin de resolver el problema de la casi nula

Más detalles

POLIGONO FUNICULAR. Figura 1 - Cable - Estructura trabajando a tracción

POLIGONO FUNICULAR. Figura 1 - Cable - Estructura trabajando a tracción TIDE - ESTRUCTURAS IV 1 POLIGONO FUNICULAR Consideramos en primer término un cable estirado entre dos puntos fijos, con una sola carga aplicada en su punto medio. Bajo la acción de la carga, el cable adopta

Más detalles

TEMA 6. SOLDADURA Y TÉCNICAS DE UNIÓN.

TEMA 6. SOLDADURA Y TÉCNICAS DE UNIÓN. Félix C. Gómez de León Antonio González Carpena TEMA 6. SOLDADURA Y TÉCNICAS DE UNIÓN. Curso de Resistencia de Materiales y cálculo de estructuras. Índice. Uniones Soldadas. Introducción. Soldadura al

Más detalles

Mecánica. Ingeniería Civil. Curso 11/12

Mecánica. Ingeniería Civil. Curso 11/12 Mecánica. Ingeniería ivil. urso / ) eterminar la dirección θ del cable y la tensión F que se requiere para que la fuerza resultante sobre el bidón de la figura sea vertical hacia arriba de módulo 800 N.

Más detalles

plettac Andamio modular

plettac Andamio modular Página 1 plettac Andamio modular Assco perfect Futuro contur Instrucciones de de montaje montaje seguro y de y aplicación Edición Enero 2006 Edición Diciembre 2004 Página 2 Andamio modular ASSCO FUTURO

Más detalles

Héctor Soto Rodríguez Centro Regional de Desarrollo en Ingeniería Civil

Héctor Soto Rodríguez Centro Regional de Desarrollo en Ingeniería Civil Héctor Soto Rodríguez Centro Regional de Desarrollo en Ingeniería Civil INTRODUCCIÓN El acero estructural se encuentra disponible en una amplia gama de perfiles laminados en caliente, placa, perfiles formados

Más detalles

Unidad 11 ESTRUCTURA DE TECHUMBRE. Centro de Transferencia Tecnológica

Unidad 11 ESTRUCTURA DE TECHUMBRE. Centro de Transferencia Tecnológica CORPORACION CHILENA DE LA MADERA CHILE PAIS FORESTAL Unidad 11 ESTRUCTURA DE TECHUMBRE CORPORACION CHILE CHILENA DE PAIS LA MADERA FORESTAL Centro de Transferencia Tecnológica Unidad 11 Centro de Transferencia

Más detalles

TEORIA DE ESTRUCTURAS Ingeniería Geológica PROBLEMAS DE EXAMEN. Curso 2010/11. Elaborados por los profesores:

TEORIA DE ESTRUCTURAS Ingeniería Geológica PROBLEMAS DE EXAMEN. Curso 2010/11. Elaborados por los profesores: TEORIA DE ESTRUCTURAS Ingeniería Geológica PROBLEMAS DE EXAMEN Curso 2010/11 Elaborados por los profesores: Luis Bañón Blázquez (PCO) Fco. Borja Varona Moya (PCO) Salvador Esteve Verdú (ASO) PRÓLOGO La

Más detalles

MECANICA DE MEDIOS CONTINUOS 2º INGENIERO GEOLOGO

MECANICA DE MEDIOS CONTINUOS 2º INGENIERO GEOLOGO 1.- La chapa rectangular ABCD de la Figura 1 está anclada en el punto A y colgada de la cuerda SC. Determinar la tensión de la cuerda y la fuerza en el punto de anclaje A cuando la chapa soporta una carga

Más detalles

Fuerza Cortante y Momento Flector

Fuerza Cortante y Momento Flector TEMA VI Fuerza Cortante y Momento Flector Mecánica Racional 10 Profesora: Nayive Jaramillo S. Contenido Vigas. Pórticos. Fuerza Cortante (V). Momento Flector (M). Convenio de signos. Diagramas de fuerza

Más detalles

Mallas espaciales. Basset Salom, Luisa ([email protected])

Mallas espaciales. Basset Salom, Luisa (lbasset@mes.upv.es) Mallas espaciales Apellidos, nombre Basset Salom, Luisa ([email protected]) Departamento Centro Mecánica de Medios Continuos y Teoría de Estructuras Escuela Técnica Superior de Arquitectura Universitat

Más detalles

Software gratuito como herramienta docente para cálculo de estructuras. Enrique Relea Gangas 1, Andrés Martínez Rodríguez 2

Software gratuito como herramienta docente para cálculo de estructuras. Enrique Relea Gangas 1, Andrés Martínez Rodríguez 2 Software gratuito como herramienta docente para cálculo de estructuras Enrique Relea Gangas 1, Andrés Martínez Rodríguez 2 1 Campus de La Yutera, Avda. Madrid 44, 34004 Palencia 1 Tel 979 10 83 13 [email protected]

Más detalles

A continuación, haz una nueva lectura pero realizando las actividades propuestas en los recuadros.

A continuación, haz una nueva lectura pero realizando las actividades propuestas en los recuadros. LAS ESTRUCTURAS Y SUS APLICACIONES. Las estructuras están presentes en todo lo que nos rodea. Dan soporte a cualquier producto tecnológico aunque son más evidentes en las grandes construcciones civiles

Más detalles

2. CARACTERÍSTICAS Y COMPORTAMIENTO DE LAS PLACAS BASE PARA COLUMNAS Y LAS PLACAS DE SOPORTE PARA VIGAS

2. CARACTERÍSTICAS Y COMPORTAMIENTO DE LAS PLACAS BASE PARA COLUMNAS Y LAS PLACAS DE SOPORTE PARA VIGAS 2. CARACTERÍSTICAS Y COMPORTAMIENTO DE LAS PLACAS BASE PARA COLUMNAS Y LAS PLACAS DE SOPORTE PARA VIGAS En este capítulo se exponen los aspectos más relevantes para este proyecto, acerca de las placas

Más detalles

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES SUMA DE VECTORES

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES SUMA DE VECTORES GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES SUMA DE VECTORES SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS SUMA DE VECTORES OBJETIVOS Usar la mesa de fuerzas

Más detalles

DISEÑO Y CÁLCULO DE LA ESTRUCTURA METÁLICA Y DE LA CIMENTACIÓN DE UNA NAVE INDUSTRIAL

DISEÑO Y CÁLCULO DE LA ESTRUCTURA METÁLICA Y DE LA CIMENTACIÓN DE UNA NAVE INDUSTRIAL UNIVERSIDAD CARLOS III DE MADRID ESCUELA POLITÉCNICA SUPERIOR DEPARTAMENTO DE MECÁNICA DE MEDIOS CONTINUOS Y TEORÍA DE ESTRUCTURAS Ingeniería Técnica Industrial Mecánica DISEÑO Y CÁLCULO DE LA ESTRUCTURA

Más detalles

MICROPILOTES Y PILOTES INSTRUMENTADOS EN PROFUNDIDAD

MICROPILOTES Y PILOTES INSTRUMENTADOS EN PROFUNDIDAD V CONGRESO DE 1/10 MICROPILOTES Y PILOTES INSTRUMENTADOS EN PROFUNDIDAD Javier RIPOLL GARCÍA-MANSILLA Ingeniero de Caminos, Canales y Puertos Ripoll Consulting de Ingeniería S.L. Director [email protected]

Más detalles

3. CASOS DE DISEÑO DE PLACAS BASE PARA COLUMNAS Y PLACAS DE SOPORTE PARA VIGAS

3. CASOS DE DISEÑO DE PLACAS BASE PARA COLUMNAS Y PLACAS DE SOPORTE PARA VIGAS 3. CASOS DE DISEÑO DE PLACAS BASE PARA COLUMNAS Y PLACAS DE SOPORTE PARA VIGAS En esta sección se describe el procedimiento de diseño para cada uno de los casos siguientes: Placas base para columnas o

Más detalles

LA ESTRUCTURA DEL PALACIO DE CONGRESOS DE ORÁN

LA ESTRUCTURA DEL PALACIO DE CONGRESOS DE ORÁN V CONGRESO DE 1/10 LA ESTRUCTURA DEL PALACIO DE CONGRESOS DE ORÁN Francisco MILLANES MATO Dr. Ingeniero de Caminos IDEAM S.A. Presidente [email protected] Miguel ORTEGA CORNEJO Ingeniero de Caminos IDEAM

Más detalles

REV.1 Calidad Medio Ambiente Prevención de Riesgos Laborales Seguridad Industrial Sector de la Electricidad y Telecomunicaciones Soldadura y Tecnologías de Unión Fabricación y Gestión de la Producción

Más detalles

Fuerzas y vectores. Equilibrio de la partícula

Fuerzas y vectores. Equilibrio de la partícula 01 Fuerzas y vectores. Equilibrio de la partícula En esta ilustración puedes ver una grúa alzando un contenedor. La fuerza que ejerce la grúa a través del cable para levantar el contenedor, su desplazamiento,

Más detalles

Tema 10: CIMENTACIONES

Tema 10: CIMENTACIONES Tema 10: CIMENTACIONES Definición. Clasificación de las cimentaciones. Requisitos esenciales para una buena cimentación. La exploración del terreno: Objetivos. Cargas admisibles en el terreno. Asientos

Más detalles

2º Tema.- Ampliación de análisis cinemático de mecanismos planos mediante métodos analíticos.

2º Tema.- Ampliación de análisis cinemático de mecanismos planos mediante métodos analíticos. Universidad de Huelva ESCUELA POLITECNICA SUPERIOR Departamento de Ingeniería Minera, Mecánica y Energética Asignatura: Ingeniería de Máquinas [570004027] 5º curso de Ingenieros Industriales 2º Tema.-

Más detalles

`ži`ril=bk=olqro^ iìáë=_~ μå_ä òèìéò mêçñéëçê=`çä~äçê~ççê af`lmfr. OPENCOURSEWARE INGENIERIA CIVIL I.T. Obras Públicas / Ing.

`ži`ril=bk=olqro^ iìáë=_~ μå_ä òèìéò mêçñéëçê=`çä~äçê~ççê af`lmfr. OPENCOURSEWARE INGENIERIA CIVIL I.T. Obras Públicas / Ing. OPENCOURSEWARE INGENIERIA CIVIL I.T. Obras Públicas / Ing. Caminos `ži`ril=bk=olqro^ iìáë=_~ μå_ä òèìéò mêçñéëçê=`çä~äçê~ççê af`lmfr (c) 2010-11 Luis Bañón Blázquez. Universidad de Alicante página 1 l_gbqfslp

Más detalles

DISEÑO DE CALDERERÍA Y ESTRUCTURAS METÁLICAS

DISEÑO DE CALDERERÍA Y ESTRUCTURAS METÁLICAS FMEC0208: DISEÑO DE CALDERERÍA Y ESTRUCTURAS METÁLICAS CÓDIGO ESPECIALIDAD C.P. PRESEN- CIALES TELEFORMA- CIÓN TOTALES TIPO DE FORMACIÓN FMEC0208 DISEÑO DE CALDERERÍA Y ESTRUCTURAS METÁLICAS SI 170 450

Más detalles

Ficha de Patología de la Edificación

Ficha de Patología de la Edificación 31 Introducción En esta segunda parte, como ya adelantamos en la ficha anterior, haremos referencia a las técnicas de prevención y de reparación más usuales para paliar los daños que pueden producirse

Más detalles

ESTRUCTURAS TRIDIMENSIONALES DE LUIS BOZZO ESTRUCTURAS Y PROYECTOS S.L.

ESTRUCTURAS TRIDIMENSIONALES DE LUIS BOZZO ESTRUCTURAS Y PROYECTOS S.L. ESTRUCTURAS TRIDIMENSIONALES DE GRANDES CLAROS. VOLCAN CHIVAS LUIS BOZZO ESTRUCTURAS Y PROYECTOS S.L. CRITERIOS DE PROYECTO Sistema de transmisión de cargas definido Planteamiento espacial no plano Materiales

Más detalles

0. INTRODUCCIÓN. OBJETO

0. INTRODUCCIÓN. OBJETO EJEMPLO DE CÁLCULO DE MUROS DE LADRILLO SEGÚN EL CÓDIGO TÉCNICO DE LA EDIFICACIÓN ========================================= ÍNDICE DE CONTENIDO Páginas 0. INTRODUCCIÓN. OBJETO... 2 1. CÁLCULO A ACCIÓN

Más detalles

Documento de Aplicación Vivienda: Seguridad estructural: Acero

Documento de Aplicación Vivienda: Seguridad estructural: Acero USO RESIDENCIAL VIVIENDA DA Documento de Aplicación Vivienda: Seguridad estructural: Acero 16 de mayo del 2oo7 Índice 1 Generalidades 1.1 Ámbito de aplicación 2 Materiales 2.1 Acero 2.2 Perfiles 2.3 Medios

Más detalles

Diseño y cálculo de bases de soporte solicitadas a flexocompresión, compresión o tracción según la combinación considerada

Diseño y cálculo de bases de soporte solicitadas a flexocompresión, compresión o tracción según la combinación considerada Diseño y cálculo de bases de soporte solicitadas a flexocompresión, compresión o tracción según la combinación considerada Apellidos, nombre Departamento Centro Arianna Guardiola Víllora ([email protected])

Más detalles

Sistema Diédrico (I). Verdadera magnitud. Abatimientos

Sistema Diédrico (I). Verdadera magnitud. Abatimientos Sistema Diédrico (I). Verdadera magnitud. Abatimientos Cuando dibujamos las proyecciones diédricas (planta, alzado y perfil) de una figura, superficie, sólido, etc.., observamos cómo sus elementos (aristas

Más detalles

Comprobación de una viga biapoyada de hormigón armado con sección rectangular

Comprobación de una viga biapoyada de hormigón armado con sección rectangular Comprobación de una viga biapoyada de hormigón armado con sección rectangular J. Alcalá * V. Yepes Enero 2014 Índice 1. Introducción 2 2. Descripción del problema 2 2.1. Definición geométrica........................

Más detalles

Objetivos docentes del Tema 10:

Objetivos docentes del Tema 10: Tema 10: Muros 1. La construcción masiva 2. Tipos de muros 3. Muros de fábrica 4. Muros homogéneos 5. Muros a base de paneles prefabricados 6. Comportamiento mecánico y estabilidad de los muros 7. Estabilidad

Más detalles

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2012/2013

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2012/2013 RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2012/2013 FAMILIA PROFESIONAL: EDIFICACIÓN Y OBRA CIVIL CICLO : PROYECTOS DE OBRA CIVIL. MÓDULO: ESTRUCTURAS DE CONSTRUCCION CURSO PRIMERO. OBJETIVOS: Realizar

Más detalles

Escuela Superior Tepeji del Río

Escuela Superior Tepeji del Río Escuela Superior Tepeji del Río Área Académica: Ingenieria Industrial Asignatura: Resistencia de los Materiales Profesor(a):Miguel Ángel Hernández Garduño Periodo: Julio- Diciembre 2011 Asignatura: Resistencia

Más detalles

VII Jornadas sobre la Actividad Docente e Investigadora en Ingeniería Agroforestal.

VII Jornadas sobre la Actividad Docente e Investigadora en Ingeniería Agroforestal. VII Jornadas sobre la Actividad Docente e Investigadora en Ingeniería Agroforestal. Plataforma e-learning y prácticas de laboratorio para la docencia de Resistencia de Materiales. Experiencias en la Escuela

Más detalles

PUENTE SAN SEBASTIAN

PUENTE SAN SEBASTIAN PUENTE SAN SEBASTIAN Leonardo FERNÁNDEZ TROYANO Dr. Ingeniero de Caminos Carlos Fernández Casado, S.L [email protected] Lucía FERNÁNDEZ MUÑOZ Ingeniero de Caminos Carlos Fernández Casado, S.L. [email protected]

Más detalles

9 Geometría. analítica. 1. Vectores

9 Geometría. analítica. 1. Vectores 9 Geometría analítica 1. Vectores Dibuja en unos ejes coordenados los vectores que nacen en el origen de coordenadas y tienen sus extremos en los puntos: A(, ), B(, ), C(, ) y D(, ) P I E N S A C A L C

Más detalles

ESTRUCTURAS ARTICULADAS

ESTRUCTURAS ARTICULADAS ESTRUTURAS ARTIULADAS Prof. arlos Navarro Departamento de Mecánica de Medios ontinuos y Teoría de Estructuras uando necesitemos salvar luces importantes (> 10 ó 15 m), o necesitamos vigas de gran canto,

Más detalles

Ejercicio de ejemplo - Diagramas de solicitaciones. Se plantea el problema de hallar los diagramas de solicitaciones de la siguiente ménsula:

Ejercicio de ejemplo - Diagramas de solicitaciones. Se plantea el problema de hallar los diagramas de solicitaciones de la siguiente ménsula: Ejercicio de ejemplo - Diagramas de solicitaciones Se plantea el problema de hallar los diagramas de solicitaciones de la siguiente ménsula: 1- Reacciones: En primer lugar determinamos el valor de las

Más detalles

8 Geometría. analítica. 1. Vectores

8 Geometría. analítica. 1. Vectores Geometría analítica 1. Vectores Dibuja en unos ejes coordenados los vectores que nacen en el origen de coordenadas y tienen sus extremos en los puntos: A(, ), B(, ), C(, ) y D(, ) P I E N S A C A L C U

Más detalles

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8 Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características

Más detalles

Anejo: UNIONES POR TORNILLOS

Anejo: UNIONES POR TORNILLOS Anejo: UNIONES POR TORNILLOS UNIONES POR TORNILLOS 1. DEFINICIÓN Y CLASIFICACIÓN Los tornillos son piezas metálicas compuestas de una cabeza de forma exagonal, un vástago liso y una parte roscada que permite

Más detalles

Tensión admisible del terreno y asientos admisibles. Los valores más usualmente manejados oscilan entre 1 y 2 kp/cm 2.

Tensión admisible del terreno y asientos admisibles. Los valores más usualmente manejados oscilan entre 1 y 2 kp/cm 2. ZAPATAS Las zapatas son cimentaciones superficiales o directas, como toda cimentación ha de garantizar, de forma permanente, la estabilidad de la obra que soporta. Los tipos de zapatas pueden ser: Por

Más detalles

1.- Resistencia de Materiales

1.- Resistencia de Materiales XI 1 MECÁNICA TÉCNICA TEMA XI 1.- Resistencia de Materiales La asignatura Mecánica Técnica la podemos dividir en dos partes. La primera, desde el tema I al tema X del programa, forma parte de lo que tradicionalmente

Más detalles

REPRESENTACIÓN DEL ESTADO TENSIONAL DE UN SÓLIDO. CÍRCULOS DE MOHR

REPRESENTACIÓN DEL ESTADO TENSIONAL DE UN SÓLIDO. CÍRCULOS DE MOHR REPRESENTACIÓN DEL ESTADO TENSIONAL DE UN SÓLIDO. CÍRCULOS DE MOHR Los círculos de Mohr son un método para representar gráficamente el estado tensional que padece un punto de un sólido en un instante determinado.

Más detalles

Figura 2-Modelo 3d de Autocad extensión.dxf

Figura 2-Modelo 3d de Autocad extensión.dxf INSTRUCTIVO PARA MODELIZACION DE ESTRUCTURAS EN 3D INSTALACIÓN DEL STRAP 12.5 1. En la carpeta STRAP125_BEAMD12 buscar SETUP y ejecutar la aplicación, tildar versión para 30 días. 2. Luego dentro de la

Más detalles

3. Construcción y prefabricación de zapatas aisladas de concreto reforzado.

3. Construcción y prefabricación de zapatas aisladas de concreto reforzado. 3. Construcción y prefabricación de zapatas aisladas de concreto reforzado. 3.1. Generalidades Las zapatas son miembros estructurales que se encargan de transmitir la carga total de columnas, pilares o

Más detalles

CYPECAD TEMARIO PARA 100 horas

CYPECAD TEMARIO PARA 100 horas CYPECAD TEMARIO PARA 100 horas MÓDULO 1: DISEÑO Y CÁLCULO DE ESTRUCTURAS DE HORMIGÓN ARMADO. Contenido: Durante el desarrollo de este módulo se realizarán varios ejemplos de cálculo de menor a mayor complejidad

Más detalles

CONFERENCIA SOBRE MUROS DE CONTENCIÓN. ANTONIO BLANCO BLASCO

CONFERENCIA SOBRE MUROS DE CONTENCIÓN. ANTONIO BLANCO BLASCO CONFERENCIA SOBRE MUROS DE CONTENCIÓN. ANTONIO BLANCO BLASCO LOS MUROS DE CONTENCIÓN SON ELEMENTOS QUE SE USAN PARA CONTENER TIERRA, AGUA, GRANOS Y DIFERENTES MINERALES, CUANDO HAY DESNIVELES QUE CUBRIR.

Más detalles

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N)

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 1. Definición de Viga de alma llena TEORÍA TEMA 9 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 3. Determinación de los esfuerzos característicos i. Concepto de Polígonos de Presiones ii. Caso

Más detalles

elojfdþk=^oj^al=v=mobqbkp^al= fåöéåáéê ~=q ÅåáÅ~=ÇÉ=lÄê~ë=m ÄäáÅ~ë= = = = mol_ibj^p= ab=bu^jbk= = = `ìêëç=ommtlmu= = = = = = = = = mêçñk=iìáë=_~

elojfdþk=^oj^al=v=mobqbkp^al= fåöéåáéê ~=q ÅåáÅ~=ÇÉ=lÄê~ë=m ÄäáÅ~ë= = = = mol_ibj^p= ab=bu^jbk= = = `ìêëç=ommtlmu= = = = = = = = = mêçñk=iìáë=_~ elojfdþk=^oj^al=v=mobqbkp^al= fåöéåáéê ~=q ÅåáÅ~=ÇÉ=lÄê~ë=m ÄäáÅ~ë= = = = mol_ibj^p= ab=bu^jbk= = = `ìêëç=ommtlmu= = = = = = = = = mêçñk=iìáë=_~ μå=_ä òèìéò= oéëéçåë~ääé=çé=ä~=~ëáöå~íìê~= = mêçñk=p~äî~ççê=bëíéîé=séêç

Más detalles

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff Seminario Universitario Material para estudiantes Física Unidad 2. Vectores en el plano Lic. Fabiana Prodanoff CONTENIDOS Vectores en el plano. Operaciones con vectores. Suma y producto por un número escalar.

Más detalles

VECTOR DE CARGAS GENERALIZADAS Q

VECTOR DE CARGAS GENERALIZADAS Q CAPITULO VECTO DE CAGAS GENEALIZADAS Q ESUMEN Se presenta el cálculo del vector de cargas generalizadas Q en marcos y armaduras planas cuyos elementos pueden ser: totalmente flexibles transversalmente

Más detalles

PROBLEMAS DE CINEMÁTICA DE MECANISMOS

PROBLEMAS DE CINEMÁTICA DE MECANISMOS TEORÍA DE MÁQUINAS PROBLEMAS DE CINEMÁTICA DE MECANISMOS Antonio Javier Nieto Quijorna Área de Ingeniería Mecánica E.T.S. Ingenieros Industriales Capítulo 1 GRADOS DE LIBERTAD. 1.1. PROBLEMA. En la figura

Más detalles

ESTUDIO POR ELEMENTOS FINITOS DE LA CONEXIÓN COPLANAR PLACA-ALBAÑILERÍA

ESTUDIO POR ELEMENTOS FINITOS DE LA CONEXIÓN COPLANAR PLACA-ALBAÑILERÍA ESTUDIO POR ELEMENTOS FINITOS DE LA CONEXIÓN COPLANAR PLACA-ALBAÑILERÍA Por: Ángel San Bartolomé PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ RESUMEN Algunos edificios presentan en su estructura muros de concreto

Más detalles

28 Evaluación de la resistencia de estructuras existentes

28 Evaluación de la resistencia de estructuras existentes 28 Evaluación de la resistencia de estructuras existentes ACTUALIZACIÓN PARA EL CÓDIGO 2002 Se revisaron los factores de reducción de la resistencia a utilizar para la evaluación analítica de la resistencia

Más detalles

bibjbkqlp=ab=`fjbkq^`fþk

bibjbkqlp=ab=`fjbkq^`fþk OPENCOURSEWARE INGENIERIA CIVIL I.T. Obras Públicas / Ing. Caminos bibjbkqlp=ab=`fjbkq^`fþk iìáë=_~ μå_ä òèìéò mêçñéëçê=`çä~äçê~ççê af`lmfr (c) 2010-11 Luis Bañón Blázquez. Universidad de Alicante página

Más detalles

STEEL BUILDINGS IN EUROPE. Edificios de acero de una sola planta Parte 4: Diseño de detalle de pórticos de naves

STEEL BUILDINGS IN EUROPE. Edificios de acero de una sola planta Parte 4: Diseño de detalle de pórticos de naves STEEL BUILDIGS I EUROPE ificios de acero de una sola planta Parte 4: Diseño de detalle de pórticos de naves ificios de acero de una sola planta Parte 4: Diseño de detalle de pórticos de naves 4 - ii PRÓLOGO

Más detalles

BENEMERITA UNIVERSIDAD AUTONOMA DE PUEBLA COLEGIO DE ARQUITECTURA BASES DE ESTATICA Y MECANICA DE MATERIALES ARQ. ALEJANDRO CARLOS CURRO CASTILLO

BENEMERITA UNIVERSIDAD AUTONOMA DE PUEBLA COLEGIO DE ARQUITECTURA BASES DE ESTATICA Y MECANICA DE MATERIALES ARQ. ALEJANDRO CARLOS CURRO CASTILLO BENEMERITA UNIVERSIDAD AUTONOMA DE PUEBLA COLEGIO DE ARQUITECTURA BASES DE ESTATICA Y MECANICA DE MATERIALES ARQ. ALEJANDRO CARLOS CURRO CASTILLO EQUIPO 3: GIL PADILLA VICTOR MANUEL GONZÁLEZ LÓPEZ DANIEL

Más detalles

Ficha de Patología de la Edificación

Ficha de Patología de la Edificación 51 1.- INTRODUCCIÓN Las grietas vienen a ser los síntomas de un daño más profundo en la edificación. Nuestro objetivo ha de ser la localización de la causa primera del daño, así podremos repararlo y si

Más detalles

Celosías Apellidos, nombre Departamento Centro

Celosías Apellidos, nombre Departamento Centro Celosías Apellidos, nombre Departamento Centro Basset Salom, Luisa ([email protected]) Guardiola Víllora, Arianna ([email protected]) Mecánica de Medios Continuos y Teoría de Estructuras Escuela Técnica

Más detalles

CÁLCULO DE PLACAS A TRAVÉS DE DISTINTAS METODOLOGÍAS

CÁLCULO DE PLACAS A TRAVÉS DE DISTINTAS METODOLOGÍAS UNIVERSIDAD CARLOS III DE MADRID ESCUELA POLITÉCNICA SUPERIOR Departamento de Mecánica de Medios Continuos y Teoría de Estructuras Ingeniería Técnica Industrial Mecánica Proyecto Fin de Carrera CÁLCULO

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 2.- RESISTENCIA DE MATERIALES. TRACCION. 1.1.- Resistencia de materiales. Objeto. La mecánica desde el punto de vista Físico

Más detalles

F:\03- COMERCIAL\CABLESMED\MARKETING CM\RECOMENDACIONES DISEÑO BARANDILLASCOPIA.PDF www.cablesmed.com Nº 7001679 Recomendaciones para el diseño de barandillas con cables tensados Las presentes recomendaciones

Más detalles

TEMA 1: DISEÑO Y DIBUJO DE OBJETOS.

TEMA 1: DISEÑO Y DIBUJO DE OBJETOS. TEMA 1: DISEÑO Y DIBUJO DE OBJETOS. Francisco Raposo Tecnología 3ºESO 1. LA REPRESENTACIÓN DE OBJETOS 1.1.EL DIBUJO TÉCNICO Es una de las técnicas que se utilizan para describir un objeto, con la intención

Más detalles

Matemáticas. Segundo de Bachillerato. I.E.S. Los Boliches. Departamento de Matemáticas

Matemáticas. Segundo de Bachillerato. I.E.S. Los Boliches. Departamento de Matemáticas Matemáticas. Segundo de Bachillerato. I.E.S. Los Boliches. Departamento de Matemáticas Relación. Geometría en el espacio (II) 1. Estudiar la posición relativa de los siguientes conjuntos de planos: (a)

Más detalles

Curso Diseño en Hormigón Armado según ACI 318-14

Curso Diseño en Hormigón Armado según ACI 318-14 SANTIAGO 27 y 29 Octubre 2015 Curso Diseño en Hormigón Armado según ACI 318-14 Clase: Diseño de Diafragmas y Losas Relator: Matías Hube G. Diseño de Diafragmas y Losas Losas en una dirección (Cáp. 7) Losas

Más detalles

Unidad didáctica 1. Normalización. Formatos de papel, márgenes, cuadro de rotulación, unidades de medida, escalas y acotación.

Unidad didáctica 1. Normalización. Formatos de papel, márgenes, cuadro de rotulación, unidades de medida, escalas y acotación. Unidad didáctica 1. Normalización. Formatos de papel, márgenes, cuadro de rotulación, unidades de medida, escalas y acotación. 1.1 Tamaños normalizados de papel El interés para normalizar el tamaño del

Más detalles

Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE

Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE 4.1 GENERALIDADES Se dice que una pieza está sometida a flexión pura

Más detalles

Una solución prefabricada con nudos rígidos: el Hospital de Fuenlabrada

Una solución prefabricada con nudos rígidos: el Hospital de Fuenlabrada Una solución prefabricada con nudos rígidos: Hugo Corres Peiretti Álvaro Ruiz Herranz 1. Introducción El Hospital de Fuenlabrada (Madrid) es un edificio proyectado con una solución prefabricada de nudos

Más detalles

EJERCICIOS PRACTICOS DE HORMIGON ARMADO INtroducción las normas EH-91 y EHE

EJERCICIOS PRACTICOS DE HORMIGON ARMADO INtroducción las normas EH-91 y EHE EJERCICIOS PRACTICOS DE HORMIGON ARMADO INtroducción las normas EH-91 y EHE This page intentionally left blank JOAQUÍN VILLODRE ROLDAN EJERCICIOS PRÁCTICOS DE HORMIGÓN ARMADO INTRODUCCIÓN A LAS NORMAS

Más detalles

CYPE-Connect. Manual del usuario. CYPE-Connect. Manual del usuario. www.cype.com. CYPE Ingenieros, S.A. Avda. Eusebio Sempere, 5

CYPE-Connect. Manual del usuario. CYPE-Connect. Manual del usuario. www.cype.com. CYPE Ingenieros, S.A. Avda. Eusebio Sempere, 5 Manual del usuario -Connect -Connect Manual del usuario Ingenieros, S.A. Avda. Eusebio Sempere, 5 03003 Alicante Tel. (+34) 965 92 25 50 Fax (+34) 965 12 49 50 [email protected] Madrid Augusto Figueroa, 32-34,

Más detalles

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO)

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) TEMA 1: REPRESENTACIÓN GRÁFICA 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) Son dos instrumentos de plástico transparente que se suelen usar de forma conjunta. La escuadra tiene forma de triángulo

Más detalles

CAPÍTULO IX INTRODUCCIÓN AL DISEÑO DE CIMENTACIONES DE HORMIGÓN ARMADO

CAPÍTULO IX INTRODUCCIÓN AL DISEÑO DE CIMENTACIONES DE HORMIGÓN ARMADO CAPÍTULO IX INTRODUCCIÓN AL DISEÑO DE CIMENTACIONES DE HORMIGÓN ARMADO 9.1 INTRODUCCIÓN: La cimentación es la parte de la estructura ue permite la transmisión de las cargas ue actúan, hacia el suelo o

Más detalles

IDENTIFICACIÓN DE LOS TIPOS DE FUERZAS EJERCIDAS ENTRE LOS CUERPOS, DIAGRAMAS DE CUERPO LIBRE

IDENTIFICACIÓN DE LOS TIPOS DE FUERZAS EJERCIDAS ENTRE LOS CUERPOS, DIAGRAMAS DE CUERPO LIBRE 1. ANÁLISIS DE LA PARTÍCULA 1.1. Descomposición de fuerzas en un plano Una fuerza representa la acción de un cuerpo sobre otro. Está caracterizada por su punto de aplicación, su magnitud y su dirección.

Más detalles

Documento Informativo

Documento Informativo UNIVERSIDAD DE IBAGUE FACULTAD DE INGENIERIA PROGRAMA DE INGENIERIA MECANICA ASIGNATURA: MECÁNICA ANALÍTICA CÓDIGO: 2120 AREA: MECANICA CICLO: BÁSICA SEMESTRE: III PRERREQUISITOS: ALGEBRA LINEAL, FÍSICA

Más detalles