PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO"

Transcripción

1 PROBEMAS DE RESISTENCIA DE MATERIAES MÓDUO 5: FEXIÓN DE VIGAS CURSO ( ).- Halle, en MPa, la tensión normal máxima de compresión en la viga cuya sección y diagrama de momentos flectores se muestran en la figura (I z = 10 3 mm 4 ). 100 N m y 60 N m z 15 mm 7 mm Un dique temporal de madera se construye con tablas horizontales A, sostenidas mediante postes verticales B, que están empotrados en el suelo de tal forma que actúan como vigas en voladizo. os postes son de sección transversal cuadrada b x b y están separados una distancia s = 0,8 m. El nivel del agua está a la altura total del dique h = m. Determinar la dimensión b mínima requerida de los postes si la tensión admisible de la madera es σ adm = 8 MPa

2 5.3( ).- Para dimensionar la ménsula indicada en la figura se pueden usar perfiles de las gamas IPN, IPE y HEB. Se pide determinar el perfil más económico posible. Dato: σ adm =150 MPa Determinar el radio más pequeño (en mm) hasta el que podemos curvar una fibra de vidrio rectilínea, de diámetro d=10 μm, sin que se produzca su rotura. Datos: E=76000 MPa; σ rot =000 MPa ( ).- Determinar el módulo resistente W z del perfil armado indicado en la figura Una viga en voladizo de longitud tiene aplicada una carga P en su extremo libre. a sección de la viga es rectangular de altura h constante y ancho b variable. Si b o es el ancho en la sección del empotramiento, determinar la ley de variación de la anchura de la viga para que la elástica sea un arco de circunferencia ( ).- Sobre la viga en voladizo de sección constante de longitud de la figura actúa la solicitación indicada.

3 Dibujar acotándolos los diagramas de esfuerzos cortantes y de momentos flectores, así como la deformada a estima, indicando los puntos de inflexión, si los hubiere Para la viga en voladizo indicada en la figura, se pide determinar el giro y el desplazamiento de la sección extrema. Datos: E, I Para la viga indicada en la figura, se pide determinar los giros de los apoyos y el desplazamiento de la sección central. Datos: E, I ( ).- Calcular el desplazamiento vertical del extremo C, v(c), en la viga de la figura, indicando su signo respecto al sistema de referencia dado. y x a q A a R a B a C ( ).- Calcular los giros de las secciones unidas por la rótula, en la viga de sección constante (de rigidez a flexión EI), indicada en la figura. EI q A P C B /4 /4 /

4 5.1.- Hallar el valor de la flecha en el tramo AB de la viga de la figura. Datos: Viga de perfil IPN 180, E = 10 GPa, P = 10 kn, a = 3 m, b = 1 m ( ).- El sistema plano indicado en la figura está constituido por la barra ABC de rigidez EI z. Si se aplica la solicitación indicada, compuesta por un par flector 4qa en la sección media de la barra BC y una carga uniforme horizontal q por unidad de longitud sobre la barra AB, se pide: 1º.- Desplazamiento de la sección C. º.- Giro del nudo rígido B, indicando el sentido. 3º.- Dibujar a estima la deformada del sistema señalando la situación de los puntos de inflexión si los hubiere. a a q B C 4qa a A

5 Hallar el desplazamiento (en mm) del punto B de la estructura de la figura. P = 1 KN = 1 m E = 10 5 MPa Perfil: IPE-10 P P P B P A Hallar el diagrama acotado de momentos flectores en la viga de la figura, indicando claramente el criterio de signos seguido. P EI ( ).- Determinar la reacción en el apoyo B de la viga de la figura. qa q A B EI a a a C 7--01

6 Hallar y representar los esfuerzos de la viga continua de la figura. Si se elimina el apoyo intermedio, Qué variación experimentan sus tensiones máximas? Para la viga de la figura, hallar las reacciones en A y B en función de P y ( ).- Una viga colocada sobre tres apoyos está sometida a cargas que producen un diagrama de momentos flectores que se indica en la figura. Calcular el desplazamiento en el punto medio del vano AB. Datos: = 10 m, EI = 10 6 N m ( ).- a viga en voladizo de longitud de la figura A está constituida por un angular de lados iguales, a carga concentrada F del extremo libre es

7 normal a uno de los lados y su línea de acción pasa por el centro de gravedad de la sección tal como se indica en la figura B. Suponiendo conocidos F y, para la sección del empotramiento se pide: 1º.- Esfuerzos a los que se encuentra sometida. º.- Ecuación del eje neutro referida a un sistema de ejes coincidentes con los principales de inercia de la sección. 3º.- Tensiones normales en los tres vértices A, B y C de la sección Para la viga en voladizo de la figura, se pide determinar la tensión normal en los vértices A, B, C, D de la sección del empotramiento ( ).- as correas de una cubierta de 10º de inclinación son perfiles IPE- 10, simplemente apoyados, de 4 m de luz. Se pide determinar la tensión máxima cuando soportan una carga vertical, uniformemente repartida, q=3 kn/m.

8 a sección transversal de una viga sometida a flexión desviada se representa en la figura 1. Cuál es la tensión en el punto A de la sección correspondiente al centro de la viga, si la distribución de cargas es la indicada en la figura? α = arctg ¾ a = 0,8 b c = 0,8 d Fig. 1 Fig (1/016) En la estructura de la figura, confinada en el plano, los pasadores A, B y E, así como los rodillos D y G, están exentos de rozamiento. AG es una viga continua con distintas secciones en los tramos AB y BG, y tiene practicada una acanaladura longitudinal donde se aloja el pasador E. En F, un cable del que pende una masa y que se apoya en una polea sin rozamiento, se une a la estructura. Se pide:

9 a) Grado de hiperestaticidad. b) Diagramas acotados de esfuerzos en BCFE. c) Mínimo perfil IPE necesario para la barra BC (acero S75, σadm = 0,6 σe). d) Reacción en D

400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn

400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDD DE JÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1 Si la sección de un perfil metálico es la que aparece en la figura, suponiendo que la chapa que une los círculos es de espesor e inercia despreciables, determina la relación entre las secciones A 1 y A

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 14.1.- Se considera un soporte formado por un perfil de acero A-42 IPN 400 apoyado-empotrado, de longitud L = 5 m. Sabiendo

Más detalles

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS Tecnología. Enunciados Ejercicios. ESTÁTICA-ESTRUCTURAS. Página 0 σ: tensiones (kp/cm 2 ) ε: deformaciones (alargamientos unitarios) σ t = σ adm : tensión de

Más detalles

60 o 60 o. RESISTENCIA DE MATERIALES II CURSO EXAMEN DE JUNIO 30/5/ h 15 min

60 o 60 o. RESISTENCIA DE MATERIALES II CURSO EXAMEN DE JUNIO 30/5/ h 15 min RESISTEI DE MTERIES II URSO 1-1 EXME DE JUIO /5/1 1 h 15 min echa de publicación de la preacta: /6/1 echa y hora de la revisión del examen: 1/6/1 a las 9: 1. Un perfil IPE de m de longitud, empotrado en

Más detalles

Tema 5 : FLEXIÓN: TENSIONES

Tema 5 : FLEXIÓN: TENSIONES Tema 5 : FLEXIÓN: TENSIONES σ MAX (COMPRESIÓN) G n n σ MAX (TRACCIÓN) Problemas Prof.: Jaime Santo Domingo Santillana E.P.S.Zamora (U.SAL.) 008 5.1.Representar los diagramas de fueras cortantes de momentos

Más detalles

Calcular el momento en el apoyo central, y dibujar los diagramas de esfuerzos. 6 m

Calcular el momento en el apoyo central, y dibujar los diagramas de esfuerzos. 6 m Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDAD DE JAÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

Leonardo Da Vinci (Siglo XV)

Leonardo Da Vinci (Siglo XV) UN POCO DE HISTORIA Leonardo Da Vinci (Siglo XV) Los 6 puentes de Leonardo Leonardo Da Vinci (Siglo XV) El método para doblar vigas de madera para darles forma de arco sin romper sus fibras Galileo (Siglo

Más detalles

Unidad Resistencia de Materiales. Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S

Unidad Resistencia de Materiales. Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S Unidad Resistencia de Materiales Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S MÓDULO III: FLEXIÓN INTRODUCCION En los capítulos anteriores las fuerzas internas eran conocidas o constantes

Más detalles

ESCUELA TECNICA SUPERIOR DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. MADRID CURSO 2010/2011 PUENTES I PRACTICA 1

ESCUELA TECNICA SUPERIOR DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. MADRID CURSO 2010/2011 PUENTES I PRACTICA 1 CURSO 2010/2011 PUENTES I PRACTICA 1 En la figura se muestra la sección transversal de un puente formado por cinco vigas prefabricadas doble T de hormigón pretensado separadas 2,635 metros entre sí. La

Más detalles

T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA-

T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA- T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA- 1. Dadas las siguientes vigas, A) clasificarlas según su sustentación en : empotradas, simplemente

Más detalles

Sistema Estructural de Masa Activa

Sistema Estructural de Masa Activa Sistema Estructural de Masa Activa DEFINICIÓN DE SISTEMAS ESTRUCTURALES Son sistemas compuestos de uno o varios elementos, dispuestos de tal forma, que tanto la estructura total como cada uno de sus componentes,

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 10.1.- Qué longitud debe tener un redondo de hierro (G = 80.000 MPa), de 1 cm de diámetro para que pueda sufrir un ángulo de

Más detalles

ESTABILIDAD II A (6402)

ESTABILIDAD II A (6402) 1 ESTABILIDAD II A (6402) GUIA DE TRABAJOS PRÁCTICOS COMPLEMENTARIOS DE SOLICITACIÓN POR TORSIÓN, FLEXIÓN, FLEXIÓN VARIABLE Y COMPUESTA Y CÁLCULO DE DESPLAZAMIENTOS POR TTV.: Por Ing. H.Eduardo Rofrano

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.

Más detalles

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f 1) Se utiliza una barra de acero de sección rectangular para transmitir cuatro cargas axiales, según se indica en la figura.

Más detalles

10. (B 1.52) Se desea considerar un diseño alterno para dar soporte al elemento BCF del problema anterior, por lo que se reemplazará

10. (B 1.52) Se desea considerar un diseño alterno para dar soporte al elemento BCF del problema anterior, por lo que se reemplazará TALLER Solucione los siguientes ejercicios teniendo en cuenta, antes de resolver cada ejercicio, los pasos a dar y las ecuaciones a utilizar. Cualquier inquietud enviarla a [email protected] o personalmente

Más detalles

PROBLEMAS DE RESISTENCIA DE MATERIALES II GRUPOS M1 y T1 CURSO 2011-12

PROBLEMAS DE RESISTENCIA DE MATERIALES II GRUPOS M1 y T1 CURSO 2011-12 PROBLEMAS DE RESISTENCIA DE MATERIALES II GRUPOS M1 y T1 CURSO 2011-12 1.1.- Determinar la relación mínima entre la longitud y el diámetro de una barra recta de sección circular, para que al girar relativamente

Más detalles

UNIVERSIDAD DIEGO PORTALES Facultad de Ingeniería Departamento de Ingeniería Industrial

UNIVERSIDAD DIEGO PORTALES Facultad de Ingeniería Departamento de Ingeniería Industrial ASIGNATURA: RESISTENCIA DE MATERIALES GUÍA N 1: ESFUERZOS Y DEFORMACIONES NORMALES 1.- Sabiendo que la fuerza en la barra articulada AB es 27 kn (tensión), hallar (a) el diámetro d del pasador para el

Más detalles

TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10

TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10 TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10 1 Es sabido que los materiales con comportamiento dúctil fallan por deslizamiento entre los planos donde se produce la rotura.

Más detalles

ESTABILIDAD II A Ejercicios No Resueltos: SOLICITACION AXIL en régimen elástico

ESTABILIDAD II A Ejercicios No Resueltos: SOLICITACION AXIL en régimen elástico A continuación, ejercicios no resueltos para los alumnos de la materia Estabilidad II A, los mismos fueron extraídos del libro: Resistencia de Materiales. Autor: Luis Ortiz Berrocal. Ejercicio n 1: Calcular

Más detalles

Tema 5 TRACCIÓN-COMPRESIÓN

Tema 5 TRACCIÓN-COMPRESIÓN Tema 5 TRACCIÓN-COMPRESIÓN Problema 5.1 Obtenga el descenso del centro de gravedad de la barra, de longitud L, de la figura sometida a su propio peso y a la fuerza que se indica. El peso específico es

Más detalles

E.T.S.I. Caminos, Canales y Puertos I.C.C.P. Universidad de Granada

E.T.S.I. Caminos, Canales y Puertos I.C.C.P. Universidad de Granada E.T.S.I. aminos, anales y Puertos I...P. Universidad de Granada ONVO. SEPTIEMBRE TEORÍA DE ESTRUTURAS 16 SEPTIEMBRE 2013 TEORÍA Tiempo: 1 hora. APELLIDOS: FIRMA: NOMBRE: DNI: La Teoría representa 1/3 de

Más detalles

TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR

TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR Problemas eformación ngular T : PROLS RSULTOS ORÓN NGULR.. plicando el método de la deformación angular obtener el diagrama de momentos flectores y dibujar aproximadamente la deformada de la estructura

Más detalles

Examen de TEORIA DE MAQUINAS Diciembre 03 Nombre...

Examen de TEORIA DE MAQUINAS Diciembre 03 Nombre... Examen de TEORIA DE MAQUINAS Diciembre 03 Nombre... La figura muestra un manipulador paralelo horizontal plano, que consta de una plataforma en forma de triángulo equilátero de lado l, cuya masa m se halla

Más detalles

Práctico 10: Desplazamientos en vigas isostáticas

Práctico 10: Desplazamientos en vigas isostáticas Práctico 10: Desplazamientos en vigas isostáticas Ejercicio 1: Una columna telescópica de tres tramos está empotrada en la base y sometida a una carga de 5kN (compresión) en su etremo superior. a longitud

Más detalles

T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS

T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS 1- Analice la deformada de cada uno de los casos presentados en la figura inferior. Responda a las siguientes consignas: a) Cuál es la parte de la viga (superior

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre MECÁNICA.

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre MECÁNICA. PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre 2005. MECÁNICA. C1) Determina la resultante del sistema de fuerzas coplanarias mostrado en la figura inferior izquierda.

Más detalles

Curso: RESISTENCIA DE MATERIALES 1

Curso: RESISTENCIA DE MATERIALES 1 Curso: RESISTENCIA DE MATERIALES 1 Módulo 3: TEORÍA DE VIGAS Luis Segura ([email protected]) º Semestre - 015 Universidad de la República - Uruguay Módulo 3 Teoría de vigas º Semestre 015 Luis Segura

Más detalles

1. Hallar por el método de Cross los diagramas de momento flector y de esfuerzo

1. Hallar por el método de Cross los diagramas de momento flector y de esfuerzo 1. allar por el método de ross los diagramas de momento flector y de esfuerzo cortante, así como las reacciones de la estructura de la figura, empleando el método de superposición en las barras cargadas.

Más detalles

TRABAJO PRÁCTICO Nº. 5: SOLICITACIONES (M, Q y N)

TRABAJO PRÁCTICO Nº. 5: SOLICITACIONES (M, Q y N) TRABAJO PRÁCTICO Nº. 5: SOLICITACIONES (M, Q y N) 1. A) Dadas las siguientes vigas, clasificarlas según su sustentación en: empotradas, simplemente apoyadas, en voladizo, continuas, con articulaciones,

Más detalles

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático.

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 2. El bloque A, cuyo peso es de 90N, se sostiene en la posición mostrada. Determinar el peso del

Más detalles

Tema 7: FLEXIÓN: HIPERESTATICIDAD. Problemas resueltos

Tema 7: FLEXIÓN: HIPERESTATICIDAD. Problemas resueltos Tema 7: FLEXIÓN: HIPERESTTIIDD Problemas resueltos Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 008 7.1.-En la viga de la figura calcular las reacciones en los apoyos M M R R m 1 m Ecuaciones

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 10.- SOLUCIONES CONSTRUCTIVAS EN CONSTRUCCIONES METALICAS Esta unidad de trabajo la vamos a desarrollar desde un punto de vista

Más detalles

FISICA I HOJA 4 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 4. ESTÁTICA FORMULARIO

FISICA I HOJA 4 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 4. ESTÁTICA FORMULARIO 4. ESTÁTIC FORMULRIO 4.1) La viga de la figura, que pesa 1.000 kg. y tiene 8 m de larga, hace de carril aéreo. Sobre ella desliza un colgador en el que colocamos 2.000 kg. de carga. Calcular la tensión

Más detalles

Introducción a la Materialidad Taller II Jorge García- Federico García G Teórica : Flexión I

Introducción a la Materialidad Taller II Jorge García- Federico García G Teórica : Flexión I Hasta ahora vimos: esfuerzos axiales simples: Tracción y Compresión. Flexión: esfuerzo compuesto, Tracción y Compresión en un mismo sólido distanciados por un brazo de palanca (z). A través de la comprensión

Más detalles

PRÁ CTICO 4: TEORI ÁS DE FÁLLÁ Y CONCENTRÁDORES DE ESFUERZOS

PRÁ CTICO 4: TEORI ÁS DE FÁLLÁ Y CONCENTRÁDORES DE ESFUERZOS PRÁ CTICO 4: TEORI ÁS DE FÁLLÁ Y CONCENTRÁDORES DE ESFUERZOS 1. El dibujo de la figura muestra una combinación de pluma de brazo con un tensor que soporta una carga de 6kN. Ambas piezas están hechas de

Más detalles

Datos: a = 1 2m q = 800 kg/m E = kg/cm 2. ************************************************************************

Datos: a = 1 2m q = 800 kg/m E = kg/cm 2. ************************************************************************ .- En la viga de la figura: a) Determinar las reacciones. b) Dimensionar la sección de la viga con perfil IPN, de forma ue la flecha en el extremo del voladizo no exceda de 5 mm. c) Hallar la flecha máxima

Más detalles

Introducción a las Estructuras

Introducción a las Estructuras Introducción a las Estructuras Capítulo once: Dimensionado UNO 1. Introducción. 1.1. Para el control de las elásticas. En este capítulo presentamos la metodología a seguir para establecer las dimensiones

Más detalles

Tercera Parte. Tablas

Tercera Parte. Tablas Tercera Parte Tablas 563 564 27 Tablas Índice 27. 1. Superficies. 27.2. Superficies figuras geométricas. 27.3. Triángulos rectángulos. 27.4. Triángulos oblicuángulos. 27.5. Inercia en secciones rectangulares.

Más detalles

PROBLEMA 1. Se pide: 1. Calcular para una confiabilidad del 95 % el valor máximo que puede tomar F para que la pieza tenga vida infinita.

PROBLEMA 1. Se pide: 1. Calcular para una confiabilidad del 95 % el valor máximo que puede tomar F para que la pieza tenga vida infinita. PROBLEMA 1 La pieza de la figura, que ha sido fabricada con acero forjado de resistencia última 750 MPa y densidad 7850 kg/m 3, sirve intermitentemente de soporte a un elemento de máquina, de forma que

Más detalles

Por métodos experimentales se determina el estado biaxial de tensiones en una pieza de aluminio en las direcciones de los ejes XY, siendo estas:

Por métodos experimentales se determina el estado biaxial de tensiones en una pieza de aluminio en las direcciones de los ejes XY, siendo estas: Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDAD DE JAÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

INDICE. Primera Parte VIGAS CONTINUAS Y ESTRUCTURAS APORTICADAS

INDICE. Primera Parte VIGAS CONTINUAS Y ESTRUCTURAS APORTICADAS INDICE Primera Parte VIGAS CONTINUAS Y ESTRUCTURAS APORTICADAS 1 La barra elástica 1.1 Introducción 1.2 Ley de Hooke. 1.3 Teorema de Mohr 1.4 EI concepto «rigidez de resorte» 1.5 Relación entre rigidez

Más detalles

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 9: TENSION Y DEFORMACION AXIAL SIMPLE

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 9: TENSION Y DEFORMACION AXIAL SIMPLE ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 9: TENSION Y DEFORMACION AXIAL SIMPLE 1- Una barra prismática de sección transversal circular está cargada por fuerzas P, de acuerdo a la figura siguiente.

Más detalles

Facultad de Arquitectura. Bases de estática y mecánica de materiales

Facultad de Arquitectura. Bases de estática y mecánica de materiales BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA Facultad de Arquitectura Bases de estática y mecánica de materiales SISTEMA ESTRUCTURAL DE MASA ACTIVA 1. Qué son las estructuras de masa activa? 2. Qué es una

Más detalles

Ejemplo 11b. Se pide: Datos: Cálculo de losas: Análisis de cargas. Cálculo de solicitaciones.

Ejemplo 11b. Se pide: Datos: Cálculo de losas: Análisis de cargas. Cálculo de solicitaciones. Ejemplo 11b. Se pide: Calcular el entrepiso del ejemplo anterior utilizando la simbología del Cirsoc 2005; el que se encuentra en vigencia. En el ejemplo anterior se resolvió el mismo entrepiso mediante

Más detalles

Problemas de Placas Rectangulares. Método de Navier

Problemas de Placas Rectangulares. Método de Navier ESTRUCTURAS II. E.T.S.I.C.C.P., UNIVERSIDAD DE GRANADA. CURSO 2005-2006 Problemas de Placas Rectangulares. Método de Navier Problema 1 La placa rectangular, de lados a y b, y espesor t, simplemente apoyada

Más detalles

MEMORIA DESCRIPTIVA DE CÁLCULO. ESTRUCTURA.

MEMORIA DESCRIPTIVA DE CÁLCULO. ESTRUCTURA. 4..4 CALCULO DEL FORJADO BAJO CUBIERTA Del edificio en estudio con la disposición estructural desarrollada en proyecto, como se indica a continuación; se pretende resolver su estructura metálica como un

Más detalles

Resistencia de Materiales. Estructuras. Tema 11. Inestabilidad en barras. Pandeo. Barra Empotrada-Empotrada.

Resistencia de Materiales. Estructuras. Tema 11. Inestabilidad en barras. Pandeo. Barra Empotrada-Empotrada. Resistencia de Materiales. Estructuras Tema 11. Inestabilidad en barras. Pandeo Módulo 6 Barra Empotrada-Empotrada. En los módulos anteriores se ha estudiado el caso del pandeo en la barra articulada-articulada,

Más detalles

f x = 0 f y = 6 kp=cm 3 f z = 17 kp=cm 3

f x = 0 f y = 6 kp=cm 3 f z = 17 kp=cm 3 Relación de problemas: Elasticidad lineal 1. Una barra de sección rectangular con anchura 100 mm, fondo 50 mm y longitud 2 m se somete a una tracción de 50 Tm; la barra sufre un alargamiento de 1 mm y

Más detalles

,oo". J. ,oo'. + '[ uoo-,lroo-,lroo'-,] ] Estructuras hiperestáticas. (Pr. 1)

,oo. J. ,oo'. + '[ uoo-,lroo-,lroo'-,] ] Estructuras hiperestáticas. (Pr. 1) E.T.S. DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. UNIVERSIDAD DE GRANADA Estructuras hiperestáticas. (Pr. 1) En Ias cuatro estructuras siguientes calcular las reacciones, leyes de esfuerzos (cortantes,

Más detalles

Análisis Estructural 1. Práctica 2. Estructura de pórtico para nave industrial

Análisis Estructural 1. Práctica 2. Estructura de pórtico para nave industrial Análisis Estructural 1. Práctica 2 Estructura de pórtico para nave industrial 1. Objetivo Esta práctica tiene por objeto el dimensionar los perfiles principales que forman el pórtico tipo de un edificio

Más detalles

PIEZAS SOMETIDAS A FLEXIÓN

PIEZAS SOMETIDAS A FLEXIÓN PIEZAS SOETIDAS A FLEXIÓN PROBLEA Nº Seleccionar en acero S55 una sección adecuada para la viga en ménsula que se muestra en la igura, siguiendo las indicaciones del EC. La pieza deberá ser capaz de soportar

Más detalles

T P N 7- CORTE PURO Y TENSION DE APLASTAMIENTO

T P N 7- CORTE PURO Y TENSION DE APLASTAMIENTO COMISION DE INGENIERIA QUIMICA T P N 7- CORTE PURO Y TENSION DE APLASTAMIENTO 1. En la figura se ve un punzón para perforar placas de acero. Supóngase que se usa un punzón con diámetro de 0,75 in para

Más detalles

Tema 4 : TRACCIÓN - COMPRESIÓN

Tema 4 : TRACCIÓN - COMPRESIÓN Tema 4 : TRCCIÓN - COMPRESIÓN F σ G O σ σ z N = F σ σ σ y Problemas Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 008 4.1.-Calcular el incremento de longitud que tendrá un pilar de hormigón

Más detalles

Equilibrio y cinemática de sólidos y barras (2)

Equilibrio y cinemática de sólidos y barras (2) Equilibrio y cinemática de sólidos y barras (2) Fuerzas aiales distribuidas y sección variable Índice Ejercicios de recapitulación Fuerzas aiales distribuidas Equilibrio Deformación Ejemplos Barras de

Más detalles

Vigas (dimensionamiento por flexión)

Vigas (dimensionamiento por flexión) Vigas (dimensionamiento por flexión) 1. Predimensionamiento por control de flechas 1.1. Esbelteces límites Según Reglamento CIRSOC 201 capítulo 9 tabla 9.5.a): Luego: Luz de cálculo (medida desde el borde

Más detalles

Introducción a las Estructuras

Introducción a las Estructuras Introducción a las Estructuras Capítulo doce: Ejemplo 10 Ejemplo diez. Se pide: Calcular las solicitaciones y dimensionar todos los elementos que componen el entrepiso de madera que se muestra en la planta

Más detalles

SECCIÓN TRANSFORMADA DE ALAS RIGIDIZADAS

SECCIÓN TRANSFORMADA DE ALAS RIGIDIZADAS SECCIÓN TRANSFORMADA DE ALAS RIGIDIZADAS LONGITUDINALMENTE SECCIÓN TRANSFORMADA DE ALAS RIGIDIZADAS LONGITUDINALMENTE Abolladura LOCAL del panel comprimido con rigidización longitudinal De acuerdo con

Más detalles

HORMIGÓN II TEMA: GUÍA DE ESTUDIO SOBRE VIGAS MIXTAS VIGAS MIXTAS 2- MATERIALES EMPLEADOS EN LA CONSTRUCCIÓN DE VIGAS MIXTAS

HORMIGÓN II TEMA: GUÍA DE ESTUDIO SOBRE VIGAS MIXTAS VIGAS MIXTAS 2- MATERIALES EMPLEADOS EN LA CONSTRUCCIÓN DE VIGAS MIXTAS VIGAS MIXTAS El tema se refiere a vigas formadas por perfiles metálicos donde la losa de hormigón armado colabora para absorber los esfuerzos de compresión. Este tipo de vigas tiene la ventaja de colocar

Más detalles

Regresar Wikispaces. Siglo XXI

Regresar Wikispaces. Siglo XXI ísica IV 1 Serie de uerza y Estática Regresar ikispaces Siglo XXI 1. Un cuerpo de 25 kp cuelga del extremo de una cuerda. Hallar la aceleración de dicho cuerpo si la tensión en la cuerda es de: a) 25 kp

Más detalles

UNIVERSIDAD TECNOLÓGICA NACIONAL-

UNIVERSIDAD TECNOLÓGICA NACIONAL- UNIVERSIDAD TECNOLÓGICA NACIONAL- Facultad Regional Bahía Blanca CÁTEDRA: ELEMENTOS DE MAQUINA Trabajo Práctico N 14 Unidad: Análisis de Elementos de Transmisión (Capítulos 8 y 9). Tema: Cálculo de engranajes,

Más detalles

ELASTICIDAD PREGUNTAS. 1. Explique que representa él modulo de rigidez de un sólido. 2. Qué significa él límite elástico de una barra de acero?

ELASTICIDAD PREGUNTAS. 1. Explique que representa él modulo de rigidez de un sólido. 2. Qué significa él límite elástico de una barra de acero? ELASTICIDAD PREGUNTAS 1. Explique que representa él modulo de rigidez de un sólido. 2. Qué significa él límite elástico de una barra de acero? 3. Dos alambres hechos de metales A y B, sus longitudes y

Más detalles

TRABAJO PRACTICO Nº 3: APOYOS Y REACCIONES DE VINCULO

TRABAJO PRACTICO Nº 3: APOYOS Y REACCIONES DE VINCULO TRABAJO PRACTICO Nº 3: APOYOS Y REACCIONES DE VINCULO 1. A) En cada uno de los cinco ejemplos siguientes se presenta en la ilustración de la izquierda el cuerpo a aislar, mientras que a la derecha se presenta

Más detalles

Problema 1. Vista general del problema. Modelo - Vista longitudinal. Sección cajón. φ= m m m

Problema 1. Vista general del problema. Modelo - Vista longitudinal. Sección cajón. φ= m m m Problema 1 Sea el puente de la Figura 1 consistente en una sección cajón de hormigón armado simplemente apoyado en sus extremos y que apoya al centro sobre una columna circular empotrada en la base. La

Más detalles

Obra: Pista de patinaje sobre hielo

Obra: Pista de patinaje sobre hielo Obra: Pista de patinaje sobre hielo Cubierta colgante pesada que cubre una luz libre de 95 metros. Su estructura está conformada por cables colocados cada 2 metros con apoyos a distinta altura. Completan

Más detalles

UNASAM FIC PRACTICA DIRIGIDA SOBRE MOMENTO TORQUE OLVG 2011

UNASAM FIC PRACTICA DIRIGIDA SOBRE MOMENTO TORQUE OLVG 2011 1. Determine el momento de la fuerza F con respecto al punto O: (a) usando la formulación vectorial, (b) la formulación vectorial. 6. Determine el momento de la fuerza con respecto al punto A. Exprese

Más detalles

INGENIERÍA CIVIL EN MECANICA PLAN 2012 GUÍA DE LABORATORIO

INGENIERÍA CIVIL EN MECANICA PLAN 2012 GUÍA DE LABORATORIO 1 INGENIERÍA CIVIL EN MECANICA PLAN 2012 GUÍA DE LABORATORIO ASIGNATURA RESISTENCIA DE MATERIALES II CÓDIGO 9509-0 NIVEL 02 EXPERIENCIA CÓDIGO C971 Flexión 2 Flexión 1. OBJETIVO GENERAL Determinar, mediante

Más detalles

Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre...

Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre... Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre... El mecanismo de la figura es un cuadrilátero articulado manivela-balancín. La distancia entre los puntos fijos A y D es 4L/ 3. En la mitad del balancín

Más detalles

Tema 6: FLEXIÓN: DEFORMACIONES

Tema 6: FLEXIÓN: DEFORMACIONES Tema 6: Fleión: Deformaciones Tema 6: FLEXÓN: DEFORCONES + Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 008 1 Tema 6: Fleión: Deformaciones 6.1.- NTRODUCCÓN Las deformaciones ha que limitarlas

Más detalles

Solución: (esfuerzos en KN) 200 kn. 400 kn. 300 kn. 100 kn. 5 m A C. 2 x 5m = 10 m. 1 cm 1,2 cm 1 cm

Solución: (esfuerzos en KN) 200 kn. 400 kn. 300 kn. 100 kn. 5 m A C. 2 x 5m = 10 m. 1 cm 1,2 cm 1 cm Problema 1. n la celosía de la figura, calcular los esfuerzos en todas las barras y reacciones en los apoyos, debido a la actuación simultánea de todas las acciones indicadas (cargas exteriores y asientos

Más detalles

ANEJO 3.A5 CÁLCULO DE LOS ESFUERZOS EN LOS ELEMENTOS DE UNIÓN

ANEJO 3.A5 CÁLCULO DE LOS ESFUERZOS EN LOS ELEMENTOS DE UNIÓN ANEJO 3.A5 CÁLCULO DE LOS ESFUERZOS EN LOS ELEMENTOS DE UNIÓN Solicitaciones que producen esfuerzo Pueden utilizarse las fórmulas aproximadas que se dan a continuación, basadas en las hipótesis tradicionales,

Más detalles

APUNTES DE CLASE: PORTICOS

APUNTES DE CLASE: PORTICOS Introducción: Los pórticos están conformados por elementos conectados entre si, que interactúan para distribuir los esfuerzos y dar rigidez al sistema. El sistema compuesto por dintel parante funciona

Más detalles

S Cargas Longit tramo Superficie Q p. prop P Forjado Sobrecarga Viento 3, ,3 0,2 0,2

S Cargas Longit tramo Superficie Q p. prop P Forjado Sobrecarga Viento 3, ,3 0,2 0,2 S Cargas Longit tramo Superficie Q p. prop P Forjado Sobrecarga Viento 3,5 189 0,3 0, 0, Según el articulo 4.3.5 de la EHE para el armado minimo de una viga según cuantia geometrica, debe ser, dada la

Más detalles

PRACTICAS DE LABORATORIO.RESISTENCIA DE MATERIALES. 1/6 ANALISIS DE DEFORMACIONES EN FLEXIÓN SIMPLE

PRACTICAS DE LABORATORIO.RESISTENCIA DE MATERIALES. 1/6 ANALISIS DE DEFORMACIONES EN FLEXIÓN SIMPLE PRACTICAS DE LABORATORIO.RESISTENCIA DE MATERIALES. 1/6 ANALISIS DE DEFORMACIONES EN FLEXIÓN SIMPLE 0. OBJETIVO DE LA PRÁCTICA La realización de esta práctica tiene como objetivos que el alumno compruebe

Más detalles

**********************************************************************

********************************************************************** 13.1.- Representar las leyes de variación del momento flector, el esfuerzo cortante y el esfuerzo normal en la viga de la figura, acotando los valores más característicos. Hallar además la epresión analítica

Más detalles

TEORIA DE ESTRUCTURAS Ingeniería Geológica PROBLEMAS DE EXAMEN. Curso 2010/11. Elaborados por los profesores:

TEORIA DE ESTRUCTURAS Ingeniería Geológica PROBLEMAS DE EXAMEN. Curso 2010/11. Elaborados por los profesores: TEORIA DE ESTRUCTURAS Ingeniería Geológica PROBLEMAS DE EXAMEN Curso 2010/11 Elaborados por los profesores: Luis Bañón Blázquez (PCO) Fco. Borja Varona Moya (PCO) Salvador Esteve Verdú (ASO) PRÓLOGO La

Más detalles

Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad

Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Curso Fisica I 1. Una barra de masa M y de largo L se equilibra como se indica en la figura 1. No hay roce. Determine el ángulo

Más detalles

ESTÁTICA DE ESTRUCTURAS Guía # 1

ESTÁTICA DE ESTRUCTURAS Guía # 1 ESTÁTI DE ESTRUTURS Guía # 1 1. Para las siguientes figuras 1, 2 3, determinar los centros de gravedad, respecto al eje correspondiente. igura 1 igura 2 igura 3 2. Descomponga la fuera de 120[kgf] en dos

Más detalles

PROBLEMAS DE EXAMEN RESUELTOS CON LA EHE-08

PROBLEMAS DE EXAMEN RESUELTOS CON LA EHE-08 HORMIGÓN ARMADO Y PRETENSADO Ingeniería Técnica de Obras Públicas Ingeniería Geológica PROBLEMAS DE EXAMEN RESUELTOS CON LA EHE-08 Curso 2010/11 Prof. Luis Bañón Blázquez Responsable de la asignatura Prof.

Más detalles

**********************************************************************

********************************************************************** 1..- a) Dimensionar la sección de la viga sabiendo que está compuesta por dos tablones dispuestos como se indica en la figura (se trata de hallar a). Tensión admisible de la madera: σ adm, tracción = 50

Más detalles

Deflexión DE vigas. Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV

Deflexión DE vigas. Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV Deflexión DE vigas Profesor: Cristian Castillo Realizado por: Barrios, Yasnahir Campos,

Más detalles

********************************************************************** En primer lugar hallaremos la excentricidad de la carga:

********************************************************************** En primer lugar hallaremos la excentricidad de la carga: 31.- Calcular la flecha máima la σ máima que resultan con el modelo de soporte esbelto sometido a carga ecéntrica. E =,1 10 6 kg/cm m. P=10000 kg. M=5000 kgm Sección pn 0 soldados a tope en las alas **********************************************************************

Más detalles

ANALISIS DE VIGAS ESTATICAMENTE INDETERMINADAS

ANALISIS DE VIGAS ESTATICAMENTE INDETERMINADAS NISIS DE VIGS ESTTICENTE INDETERINDS.. DEFINICIÓN. Se denomina de esta manera a una barra sujeta a carga lateral; perpendicular a su eje longitudinal, en la que el número de reacciones en los soportes

Más detalles

Modelizado y cálculo de solicitaciones. 1. La estructura

Modelizado y cálculo de solicitaciones. 1. La estructura 1 Modelizado y cálculo de solicitaciones 1. La estructura Se trata de una marquesina de madera. Como se aprecia en la imagen. Se trata de 8 pórticos paralelos entre ellos. Son vigas de gran luz que forman,

Más detalles

Consignas de reflexión a) Defina el concepto de momento torsor. b) Cómo se distribuyen las tensiones de corte en la sección transversal de la llave?

Consignas de reflexión a) Defina el concepto de momento torsor. b) Cómo se distribuyen las tensiones de corte en la sección transversal de la llave? TRABAJO PRACTICO Nro. 8- TORSION 1) a ) Para la llave de la fig. calcule la magnitud del par de torsión aplicado al perno si se ejerce una fuerza de 50 N en un punto a 250 mm del eje de la caja. b) Calcule

Más detalles

CAPÍTULO 14 ESTRUCTURAS INTRASLACIONALES

CAPÍTULO 14 ESTRUCTURAS INTRASLACIONALES ÍTULO 4 ESTUTUS INTSLIONLES En esistencia de ateriales suele despreciarse las deformación inducida por los esfuerzos axiles y cortantes en estructuras formadas por barras Despreciar el primer tipo de esfuerzo

Más detalles

L=1,85. a) Suponemos que la viga tiene sólo una masa puntual para asimilarlo al comportamiento de un muelle de constante elástica:

L=1,85. a) Suponemos que la viga tiene sólo una masa puntual para asimilarlo al comportamiento de un muelle de constante elástica: IIND 4º CURSO. ESTRUCTURAS PROBLEMAS PROPUESTOS DE DINÁMICA NOTA: Cuando proceda considerar el factor de amortiguamiento, tómese: ζ= 0,02. D 1. Una viga simplemente apoyada de 1,85 m de luz está formada

Más detalles

CAPÍTULO IV: ANÁLISIS ESTRUCTURAL 4.1. Introducción al comportamiento de las estructuras Generalidades Concepto estructural Compo

CAPÍTULO IV: ANÁLISIS ESTRUCTURAL 4.1. Introducción al comportamiento de las estructuras Generalidades Concepto estructural Compo CAPITULO 0: ACCIONES EN LA EDIFICACIÓN 0.1. El contexto normativo Europeo. Programa de Eurocódigos. 0.2. Introducción al Eurocódigo 1. Acciones en estructuras. 0.3. Eurocódigo 1. Parte 1-1. Densidades

Más detalles

Flexión. (Pr. 1) Sabiendo que las cargas que pueden actuar sobre la pasarela son: Peso propio: 200kplm2. Sobrecarga de uso distribuida: 300kplm2

Flexión. (Pr. 1) Sabiendo que las cargas que pueden actuar sobre la pasarela son: Peso propio: 200kplm2. Sobrecarga de uso distribuida: 300kplm2 E.T.S. DE INGENItrROS DE CAMINOS, CANALES Y PUERTOS. UNIVERSIDAD DE GRANADA Flexión. (Pr. 1) Se quiere construir una pasarela peatonal biapoyada de L2m de luz, cuya anchura es de 2.5m. Para sustentar dicha

Más detalles

Ficha Técnica. utilizados en este Capítulo deben ser iguales o menores que 8,3 MPa

Ficha Técnica. utilizados en este Capítulo deben ser iguales o menores que 8,3 MPa 1. Requisitos generales La tracción o la compresión que solicita la barra de acero, se debe transmitir o desarrollar hacia cada lado de la sección considerada mediante una longitud de armadura embebida

Más detalles

ZAPATAS MEDIANERAS. Sin viga de fundación. Con viga de fundación áerea. Con viga de fundación enlazada

ZAPATAS MEDIANERAS. Sin viga de fundación. Con viga de fundación áerea. Con viga de fundación enlazada ZAPATAS MEDIANERAS Sin viga de fundación Con viga de fundación áerea Con viga de fundación enlazada ANALISIS ESTRUCTURAL DE ZAPATAS MEDIANERAS Por CARLOS MAURICIO AGUIRRE GALLEGO ALEJANDRO DARIO AMARIS

Más detalles

C 6.1. ESTADOS LÍMITES PARA SOLICITACIONES DE FLEXIÓN Y DE CORTE

C 6.1. ESTADOS LÍMITES PARA SOLICITACIONES DE FLEXIÓN Y DE CORTE COMENTARIOS AL CAPÍTULO 6. BARRAS EN FLEXIÓN SIMPLE Para tener una respuesta simétrica de la sección en flexión simple y evitar efectos torsionales, se exige que cuando sean más de una las arras de los

Más detalles

TALLER # 1 ESTÁTICA. Figura 1

TALLER # 1 ESTÁTICA. Figura 1 TALLER # 1 ESTÁTICA 1. Una barra homogénea de 00N de peso y longitud L se apoya sobre dos superficies como se muestra en la figura 1. Determinar: a. El valor de la fuerza F para mantener la barra en la

Más detalles

ESTRUCTURAS. Los tipos de esfuerzos que pueden actuar sobre un elemento son:

ESTRUCTURAS. Los tipos de esfuerzos que pueden actuar sobre un elemento son: ESTRUCTURAS 0. TIPOS DE ESFUERZOS 1. ESTRUCTURAS: CONCEPTO Y CLASIFICACIONES. 2. PROPIEDADES DE LAS ESTRUCTURAS: ESTABILIDAD, RESISTENCIA Y RIGIDEZ. 3. ELEMENTOS DE LAS ESTRUCTURAS: VIGAS Y PILARES, PERFILES

Más detalles

Examen de TEORIA DE MAQUINAS Junio 07 Nombre...

Examen de TEORIA DE MAQUINAS Junio 07 Nombre... Examen de TEORIA DE MAQUINAS Junio 07 Nombre... La figura muestra un mecanismo biela-manivela. La manivela posee masa m y longitud L, la biela masa 3 m y longitud 3 L, y el bloque masa 2m. En la posición

Más detalles

BLOQUE TEMÁTICO 2 UNIDAD TEMÁTICA 7 LECCIÓN 25 H. A. VIGAS. FORMAS DE TRABAJO. ARMADURA.

BLOQUE TEMÁTICO 2 UNIDAD TEMÁTICA 7 LECCIÓN 25 H. A. VIGAS. FORMAS DE TRABAJO. ARMADURA. BLOQUE TEMÁTICO 2 UNIDAD TEMÁTICA 7 LECCIÓN 25 H. A. VIGAS. FORMAS DE TRABAJO. ARMADURA. 1 ÍNDICE 1.- INTRODUCCIÓN. GENERALIDADES. 2.- FORMA DE TRABAJO. 2.1.- flexión 2.2.- cortante 2.3.- torsión 3.- DISPOSICIÓN

Más detalles

1.- Torsión. Momento de Torsión

1.- Torsión. Momento de Torsión MECÁNICA TÉCNICA TEMA XX 1.- Torsión. Momento de Torsión En un caso más general, puede suceder que el plano del Momento, determinado por el momento resultante de todos los momentos de las fuerzas de la

Más detalles

CAPÍTULO F. VIGAS Y OTRAS BARRAS EN FLEXIÓN

CAPÍTULO F. VIGAS Y OTRAS BARRAS EN FLEXIÓN CAPÍTUO F. VIGAS Y OTRAS BARRAS N FXIÓN ste Capítulo es aplicale a arras prismáticas, con secciones compactas no compactas, sujetas a flexión corte. as arras formadas por un solo perfil ángulo (de ángulo

Más detalles

DISEÑO POR CAPACIDAD NORMA INPRES - CIRSOC 103

DISEÑO POR CAPACIDAD NORMA INPRES - CIRSOC 103 DISEÑO POR CAPACIDAD NORMA INPRES - CIRSOC 103 DEFINICIÓN Método de diseño para estructuras sometidas a la acción sísmica. En el diseño de estructuras por capacidad, los elementos estructurales que resistirán

Más detalles