REPRESENTACIÓN DEL ESTADO TENSIONAL DE UN SÓLIDO. CÍRCULOS DE MOHR


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "REPRESENTACIÓN DEL ESTADO TENSIONAL DE UN SÓLIDO. CÍRCULOS DE MOHR"

Transcripción

1 REPRESENTACIÓN DEL ESTADO TENSIONAL DE UN SÓLIDO. CÍRCULOS DE MOHR Los círculos de Mohr son un método para representar gráficamente el estado tensional que padece un punto de un sólido en un instante determinado. Aunque actualmente, gracias a los ordenadores, es posible calcular las tensiones con gran precisión sin recurrir a estos métodos, siguen siendo de gran validez puesto que de un solo golpe de vista hacen comprensible la situación tensional del sólido. Para entender esta representación repasaremos brevemente algunos conceptos ya estudiados como los de esfuerzo (tensión) y deformación, y su modo de ser expresados. 1. ESFUERZO El esfuerzo o tensión se define como una fuerza por unidad de área, con unidades en psi o MPa. En una pieza sujeta a algunas fuerzas, los esfuerzos se distribuyen como una función continuamente variable dentro del continuo del material. Cada elemento infinitesimal en el material puede experimentar esfuerzos distintos al mismo tiempo, por lo que debemos considerar los esfuerzos como actuando sobre elementos infinitesimalmente pequeños dentro de la pieza. Estos elementos suelen modelarse cada uno como un cubo, según se muestra en la Figura 4-1. Las componentes de los esfuerzos actúan en las caras de estos cubos de dos maneras distintas. Los esfuerzos normales actúan de manera perpendicular (es decir, normal) a la cara del cubo y tienen tendencia ya sea a tirar de él (esfuerzo a tracción), o a empujarlo (esfuerzo a compresión). Los esfuerzos cortantes actúan paralelos a las caras de los cubos, en pares sobre caras opuestas, lo que tiende a distorsionar el cubo a forma romboidal. Esto es análogo a tomar las dos rebanadas de pan de un sándwich de Nocilla y deslizarlas en dirección opuesta. Como resultado, la capa de Nocilla se cortará. Estas componentes normales y cortantes del esfuerzo que actúan sobre un elemento infinitesimal conforman los términos de un tensor. El esfuerzo es un tensor de segundo orden y por lo tanto requiere nueve valores componentes para describirlo en tres dimensiones. El tensor de esfuerzos en tres dimensiones se puede expresar como la matriz: σ xx τ yx τ zx τ σ τ xy yy zy τ xz τ yz σ zz (4.1a) donde la notación para cada componente de esfuerzos contiene tres elementos, una magnitud (ya sea σ o τ), la dirección de una normal a la superficie de referencia (primer subíndice) y en una dirección de acción (segundo subíndice). Nos serviremos σ de referimos a los esfuerzos normales y τ para los esfuerzos cortantes. Muchos elementos de maquinaria están sujetos a estados de esfuerzo tridimensionales y por lo tanto requieren un tensor de esfuerzo como el de la ecuación 4.1a. Hay, sin embargo, casos especiales, que se pueden tratar como estados de esfuerzo en dos dimensiones. El tensor de esfuerzo para dos dimensiones es (4.1b) La Figura 4-1 muestra un cubo infinitesimal de material tomado del interior de una pieza sujeta a algunos esfuerzos tridimensionales. Las caras de este cubo infinitesimal son paralelas a un sistema de ejes xyz tomado con alguna orientación conveniente. La orientación de cada una de las caras se

2 define por su vector superficial normal 1 según se muestra en la Figura 4-1a. La normal de superficie a la cara x es paralela al eje de las x, etcétera. Obsérvese que, por lo tanto, hay dos caras x, dos caras y y dos caras z, una positiva y la otra negativa, según se defina el sentido de su vector superficial normal. En las Figuras 4-Ib y c se muestran los nueve componentes de esfuerzo, actuando sobre las superficies de este elemento infinitesimal. Las componentes σ xx, σ yy y σ zz son los esfuerzos normales, que se llaman así porque actúan en dirección normal a las superficies x, y, z del cubo, respectivamente. Las componentes τ xy y τ xz, por ejemplo, son los esfuerzos cortantes que actúan sobre la cara x y cuyas direcciones de acción son paralelas a los ejes y y z, respectivamente. El signo de cualquiera de estas componentes se define como positivo si los signos de su normal a la superficie y la dirección de fuerzo son iguales; y negativo, si son distintos. Por lo que las componentes que se muestran en la Figura 4-lb son todas ellas positivas, porque accionan sobre las caras positivas del cubo y sus direcciones también son positivas. Las componentes que se muestran en la Figura 4-1 c son todas ellas negativas, porque actúan sobre las caras positivas del cubo y sus direcciones son negativas. Esta regla de signos convencional hace que los esfuerzos normales de tracción sean positivos, y los esfuerzos normales de compresión, negativos. En el caso de dos dimensiones, sólo una cara del cubo de esfuerzos necesita dibujarse. Si se retienen las direcciones x y y, y se elimina la z, miraremos perpendicularmente al plano xy del cubo de la Figura 4-1, y veremos los esfuerzos que aparecen en la Figura 4-2, que actúan sobre las caras no vistas del cubo. En función de la regla convencional de signos arriba enunciada, el lector deberá confirmar que las componentes de esfuerzo que aparecen en la Figura 4-2 sean todas positivas. La notación de doble subíndice arriba citada es consistente cuando se aplica a esfuerzos normales. Por ejemplo, el esfuerzo normal σ xx actúa sobre la cara x y también aparece en la dirección x. Dado que en esfuerzos normales los subíndices se repiten, es común eliminar uno de ellos y hacer referencia a las componentes normales o perpendiculares como σ x, σ y y σ z. En las componentes de esfuerzo cortante se necesitan para su definición ambos subíndices y se conservan. También se puede demostrar que el tensor de esfuerzo es simétrico, lo que significa que Con ello se reduce el número de componentes de esfuerzo a calcular. (a) Normales de superficie. (b) Componentes de esfuerzo (c) Componentes de positivas. esfuerzo negativas. FIGURA DEFORMACIÓN 1 Un vector normal de superficie se define como que crece hacia fuera de la superficie del sólido, en dirección perpendicular o normal a dicha superficie. Su signo se define como el sentido de este vector normal de superficie, en el sistema local de coordenadas.

3 En la región elástica de la mayor parte de los materiales de ingeniería el esfuerzo y la deformación están relacionados de manera lineal mediante la ley de Hooke. La deformación es también un tensor de segundo orden y se puede expresar para el caso tridimensional de la forma y en el caso de dos dimensiones (4.3b) donde ε representa tanto una deformación normal como una deformación producida por el esfuerzo cortante, quedando ambas diferenciadas por sus subíndices. Aquí también por comodidad simplificaremos los subíndices repetidos, para deformaciones perpendiculares o normales a ε x, ε y y ε z, y al tiempo consideraremos dobles subíndices para identificar deformaciones por cortante. 3. ESFUERZOS PRINCIPALES Los sistemas de ejes tomados en la Figura 4-1 y la Figura 4-2 son arbitrarios y, por lo general, se eligen por comodidad al calcular los esfuerzos aplicados. Para cualquier combinación particular de esfuerzos aplicados, alrededor de cualquier punto que se analice habrá una distribución continua del campo de esfuerzos. Los esfuerzos normales y cortantes en el punto variarán con la dirección en cualquier sistema de coordenadas que se escoja. Siempre habrá planos sobre los cuales las componentes de esfuerzo cortante sean igual a cero. Los esfuerzos normales que actúan sobre esos planos se conocen como esfuerzos principales. Los planos sobre los cuales estas fuerzas principales actúan se conocen como planos principales. La dirección de las normales de superficie a los planos principales se conocen como ejes principales y los esfuerzos normales que actúan en estas direcciones se conocen como esfuerzos normales principales. Habrá también otro conjunto de ejes mutuamente perpendiculares sobre los cuales los esfuerzos cortantes serán máximos. Los esfuerzos cortantes principales actúan sobre un conjunto o sistema de planos que están a 45º en relación con los planos de los esfuerzos normales principales. En la Figura 4-3 aparecen los planos principales y los esfuerzos principales, para el caso en dos dimensiones de la Figura 4-2. Desde un punto de vista de ingeniería lo que más nos preocupa en el diseño de nuestras piezas de maquinaria es que no fallen y el fallo ocurrirá si el esfuerzo en cualquier punto excede a cierto valor seguro. Es necesario que determinemos los esfuerzos de mayor dimensión (tanto normales como de cortante) que ocurren en cualquier parte dentro del material que forma nuestra pieza de maquinaria. Quizá nos preocupe menos de la dirección de estos esfuerzos que su magnitud, siempre y cuando el material se pueda considerar por lo menos macroscópicamente isótropo, es decir, con propiedades de resistencia uniformes en todas direcciones. La mayor parte de los metales y muchos otros materiales de ingeniería cumplen con estos criterios, aunque como notables excepciones se deben mencionar la madera y los materiales compuestos.

4 La expresión que relaciona los esfuerzos aplicados con los esfuerzos principales es donde σ es la magnitud del esfuerzo principal y n x, n y y n z, son los cosenos directores del vector unitario n, que es normal al plano principal: Para que haya una solución a la ecuación 4.4a, el determinante de la matriz de coeficientes debe ser igual a cero. Al expandir este determinante e igualarlo a cero, obtenemos donde La ecuación 4.4c es un polinomio cúbico en σ. A los coeficientes C 0, C 1, y C 2 se les conoce como invariantes tensoriales, porque tienen los mismos valores, independientemente de la elección inicial de los ejes xyz sobre los cuales se midieron o calcularon los esfuerzos aplicados. Estos tres esfuerzos principales (normales) σ 1, σ 2 y σ 3 son las tres raíces de este polinomio cúbico. Las raíces de este polinomio son siempre reales y, por lo general, quedan ordenadas de manera que σ 1 >σ 2 >σ 3. De ser necesario, se puede determinar la dirección de los vectores principales de esfuerzo, sustituyendo cada raíz de la ecuación 4.4c en 4.4a y resolviendo en función de n x, n y y n z, para cada uno de los tres esfuerzos principales. Las respectivas direcciones de los tres esfuerzos principales son mutuamente ortogonales. Los esfuerzos cortantes principales se pueden determinar a partir de los valores de los esfuerzos normales principales, utilizando Si los esfuerzos normales principales han sido ordenados como se muestra arriba, entonces τ máx = τ 13. Las respectivas direcciones de los planos de los esfuerzos cortantes principales están a 45º de los esfuerzos normales principales, y también son mutuamente ortogonales. La solución de la ecuación 4.4c en función de sus tres raíces se puede hacer de manera trigonométrica o mediante un algoritmo iterativo de determinación de raíces. Para el caso especial de un estado de esfuerzos en dos dimensiones, las ecuaciones 4.4c para el esfuerzo principal se reducen a 2 2 También se aplican las ecuaciones 4.6 cuando un esfuerzo principal es distinto de cero, pero está dirigido a lo largo de uno de los ejes del sistema de coordenadas xyz seleccionado para el cálculo. El cubo de esfuerzos de la Figura 4-2 se gira entonces respecto a un eje principal para determinar los ángulos de los otros dos planos principales.

5 Las dos raíces distintas de cero calculadas a partir de la ecuación 4.6a se identifican temporalmente como σ a y σ b, y en el caso de dos dimensiones, la tercera raíz σ c, será siempre igual a cero. Dependiendo de valores resultantes, las tres raíces entonces se identifican de acuerdo con la regla convencional: la algebraicamente mayor = σ 1, la algebraicamente menor = σ 3 Y la otra = σ 2. Aplicando la ecuación 4.6a para resolver el ejemplo que aparece en la Figura 4-4 nos daría valores de σ 1 = σ a, σ 3 = σ b Y σ 2 = σ c = 0, según aparece indicado en la figura 3. Por supuesto, la ecuación 4.4c correspondiente al caso tridimensional se puede utilizar de todas maneras para resolver cualquier caso en dos dimensiones. Uno de los tres esfuerzos principales determinados aparecerá entonces como igual a cero. Una vez determinados los tres esfuerzos principales y ordenados según se describe arriba, se determina el esfuerzo cortante máximo a partir de la ecuación 4.5: 4. ESFUERZO PLANO Y DEFORMACIÓN PLANA El estado general del esfuerzo y la deformación es tridimensional, pero hay configuraciones geométricas particulares que pueden ser tratadas de manera distinta. Esfuerzo plano El estado de esfuerzos en dos dimensiones, es decir biaxial, también se conoce como esfuerzo plano. El esfuerzo plano requiere que un esfuerzo principal sea igual a cero. Esta situación es común en algunas aplicaciones. Por ejemplo, una placa o un cascarón delgado puede también tener un estado de esfuerzos plano lejos de sus bordes o de sus puntos de sujeción. Estos casos se pueden tratar con el procedimiento más sencillo de las ecuaciones 4.6. Deformación plana Hay deformaciones principales asociadas con los esfuerzos principales. Si una de las deformaciones principales (digamos ε 3 ) es igual a cero, y las deformaciones restantes son independientes de la dimensión a lo largo de su eje principal, n 3, éste se conocerá como deformación plana. Esta situación ocurre en geometrías particulares. Por ejemplo, si una barra larga, sólida, prismática está cargada únicamente en la dirección transversal, aquellas regiones dentro de ella que estén lejos de cualquier restricción en sus extremos tendrán en esencia una deformación igual a cero en la dirección a lo largo del eje de la barra, y se tratará de una deformación plana. (Sin embargo, el esfuerzo no es igual a cero en la dirección de deformación igual a cero.) Un dique hidráulico largo puede considerarse con una situación de deformación plana, en regiones muy lejos de sus extremos o de su base, donde está sujeto a estructuras vecinas. 5. CÍRCULOS DE MOHR 3 Si en el caso de dos dimensiones la regla convencional de numeración en tres dimensiones se sigue con rigidez, entonces algunas veces los dos esfuerzos principales distintos de cero se convertirán en σ 1 y σ 3 si son de signo opuesto (como en el caso del ejemplo 4-1). Otras veces serán σ 1 y σ 2 cuando ambos sean positivos y el menor (σ 3 ) es igual a cero (como en el caso del ejemplo 4-2). Una tercera posibilidad es que ambos esfuerzos principales distintos de cero sean negativos (a compresión) y el algebraicamente mayor del conjunto (σ 1 ) sea entonces igual a cero. La ecuación 4.6 identifica de manera arbitraria los dos esfuerzos bidimensionales principales distintos de cero σ a y σ b, con el que queda (σ c ) reservado para el miembro igual a cero del trío.

6 Desde hace mucho tiempo los círculos de Mohr 4 han sido una forma de solución gráfica de la ecuación 4.6 y de determinar los esfuerzos principales para el caso de esfuerzos planos. Muchos libros de texto sobre diseño de máquinas presentan el método del círculo de Mohr como una técnica primordial de solución para la determinación de esfuerzos principales. Antes de la llegada de las calculadoras y de las computadoras programables, el método gráfico de Mohr era una forma razonable y práctica de resolución de la ecuación 4.6. Hoy día, sin embargo, es mucho más práctico determinar numéricamente los esfuerzos principales. Sin embargo, presentamos el método gráfico por varias razones. Puede servir como verificación rápida a una solución numérica, o quizás sea el único método viable si falla la energía de su computadora o si se agotan las pilas de su calculadora. También cumple con el útil objetivo de ser una presentación visual del estado de los esfuerzos en un punto. También hay círculos de Mohr en el caso de esfuerzos tridimensionales, pero no está disponible ningún método de graficación para crearlos directamente a partir de datos de esfuerzos aplicados, excepto en el caso especial de que uno de los esfuerzos principales sea coincidente con un eje del sistema de coordenadas xyz seleccionado, es decir, cuando uno de los planos es el del esfuerzo principal. Sin embargo, una vez calculados los esfuerzos principales a partir de la ecuación 4.4c mediante alguna técnica adecuada de determinación de raíces, se pueden dibujar círculos de Mohr tridimensionales según los esfuerzos principales calculados. El plano de Mohr --en el cual se trazan los círculos de Mohr- se organiza con sus ejes mutuamente perpendiculares, aunque en el espacio real el ángulo entre ellos representa 180º. Todos los ángulos dibujados en el plano de Mohr tienen el doble de su valor en el espacio real. La abscisa es el eje para todos los esfuerzos normales. Los esfuerzos normales aplicados σ x, σ y y σ z, se trazan a lo largo de este eje y los esfuerzos principales σ 1, σ 2 y σ 3 también se determinan sobre este eje. La ordenada es el eje para todos los esfuerzos cortantes. Se utiliza para trazar los esfuerzos cortantes aplicados τ XY, τ XZ y τ YZ y determinar el esfuerzo cortante máximo 5. Mohr utilizó una regla convencional de signos para esfuerzos cortantes, que hace que los pares esfuerzo cortante en sentido del movimiento de las agujas del reloj sean positivos, lo que no es consistente con la regla de la mano derecha, ahora estándar. Aun así, esta regla convencional de la mano izquierda se sigue empleando para el círculo de Mohr. La mejor manera de demostrar el uso del círculo de Mohr es mediante ejemplos. 4 Ideados por el ingeniero alemán Otto Mohr ( ). Sus círculos también se utilizan para la transformación coordenada de deformaciones, de los momentos de área y de los productos de inercia. 5 El hecho de que Mohr utilizara un mismo eje para trazar más de una variable es una de las fuentes de confusión para los estudiantes cuando se enfrentan por primera vez a este método. Sólo se debe recordar que todos los esfuerzos normales se trazan sobre el eje horizontal, trátese o no de esfuerzos normales (σ x, σ y, σ z ) o de esfuerzos principales (σ 1, σ 2 y σ 3 ) aplicados y todas las tensiones tangenciales se trazan sobre el eje vertical, independientemente que se trate de esfuerzos cortantes (τ xy, etcétera) o de esfuerzos cortantes máximos aplicados (τ 12, etcétera). Los ejes de Mohr no son ejes cartesianos convencionales.

7 EJEMPLO 1 Determinación de los esfuerzos principales mediante los círculos de Mohr Problema Un elemento de esfuerzo biaxial como se muestra en la Figura 4-2 tiene σ x = psi, σ y = psi y τ xy = psi en sentido contrario al de las manecillas del reloj (ccw). Se pide trazar los círculos de Mohr para determinar los esfuerzos principales. Solución Véanse la Figura 4-2 y la Figura Se trazan los ejes del plano de Mohr según se muestra en la Figura 4-5b, y márquelos como σ y τ. 2 Se sitúan los esfuerzos dados σ x, (como línea OA) en cualquier escala práctica a lo largo del eje de esfuerzos normales (horizontales). En este ejemplo σ x., es un esfuerzo de tensión (positivo). 3 Se lleva el esfuerzo σ y (como línea) a lo largo del eje normal de esfuerzos. En este caso σ y es un esfuerzo de compresión (negativo). 4 La Figura 4-2 muestra que el par de esfuerzos cortantes τ xy crea un par en sentido contrario al de las agujas del reloj sobre el elemento. Este par se equilibra con el par en sentido de las agujas del reloj proporcionado por los esfuerzos cortantes τ y. Estos dos esfuerzos cortantes (τ xy y τ yx,) son de igual magnitud, de acuerdo con la ecuación 4.2, y positivos, de acuerdo con la regla de signos convencionales de esfuerzos. Pero, en vez de utilizar la regla convencional de signos de esfuerzos, se trazan en el círculo de Mohr de acuerdo con la rotación que implican para el elemento, según la regla convencional de signos de la mano izquierda: positivo en sentido de las agujas del reloj y negativo en sentido contrario al de las agujas del reloj. 5 Dibujamos una línea vertical hacia abajo --en sentido contrario al movimiento de las agujas del reloj - del extremo de τ x, (como línea AC) para representar la magnitud a escala de τ xy. Trazamos una línea vertical hacia arriba -en sentido del movimiento de las agujas del reloj- del extremo de σ sy (como línea BD) para representar la magnitud a escala de τ yx. 6 El diámetro de un círculo de Mohr es la distancia del punto C al punto D. La línea AB corta a CD. El círculo se dibuja tomando esta intersección como centro. 7 Dos de los esfuerzos normales principales se determinan a continuación como las dos intersecciones que este círculo de Mohr hace con el eje de esfuerzos normales, en los puntos P 1, y P 3 : σ 1 = psi, y σ 3 = psi. 8 Dado que en este ejemplo no hay esfuerzos aplicados en la dirección z, se trata de un estado de esfuerzos de dos dimensiones, y el tercer esfuerzo principal σ 2, es igual a cero, y se localiza en el punto 0, que también se identifica como P 2. 9 Todavía deben dibujarse otros dos círculos de Mohr. Los tres círculos de Mohr quedan definidos por los diámetros (σ 1 σ 2 ), (σ 1 σ 3 ) y de (σ 2 σ 3 ), que son las líneas P 1 P 2, P 1 P 3 Y P 2 P 3. Los tres círculos aparecen en la Figura 4-5c. 10 Trazamos líneas tangentes horizontales desde los extremos superior e inferior de cada círculo de Mohr hasta su intersección con el eje del cortante (vertical). Ello determina los valores de los esfuerzos cortantes principales, asociados con cada par de esfuerzos normales principales: τ 13 = , τ 12 = y τ 23 = psi. A pesar de tener únicamente dos esfuerzos normales principales distintos de cero, hay también tres esfuerzos cortantes principales distintos de cero. Sin embargo, sólo el mayor de ellos, τ máx = τ 3 = psi es de interés para efectos de diseño. 11 También podemos determinar los ángulos (con respecto a nuestros ejes xyz originales) de los esfuerzos normales principales y los cortantes principales, partiendo del círculo de Mohr. Estos ángulos, si el material es homogéneo o isótropo, sólo tienen un interés académico. En caso de no ser isótropo, las propiedades del material dependen de la dirección y entonces la dirección de los esfuerzos principales es de importancia. El ángulo 2Φ = -45' de la Figura 4-5a representa la

8 orientación del esfuerzo normal principal con respecto al eje de las x en nuestro sistema original. La línea DC del plano de Mohr está en el eje de las x en el espacio real, y los ángulos se miden de acuerdo con la regla convencional de la mano izquierda de Mohr ---en sentido del movimiento de las agujas del reloj- Dado que en el espacio real los ángulos del plano de Mohr son el doble, el ángulo del esfuerzo principal σ 1 con respecto al eje x en el espacio real es Φ = -22.5'. El esfuerzo σ 3 será de 90º a partir de σ 1 y en el espacio real el esfuerzo cortante máximo τ 13 estará a 45º del eje de σ 1.

9 EJEMPLO 2 Determinación de esfuerzos planos mediante los círculos de Mohr Problema Un elemento de esfuerzo biaxial como se muestra en la Figura 4-2 tiene σ x, = psi, σ y = psi y τ xy = psi en sentido contrario al movimiento de las manecillas del reloj (ccw). Determínense, mediante círculos de Mohr, los esfuerzos principales. Solución Véanse las Figuras 4-2 y Trazamos los ejes del plano de Mohr según se muestra en la Figura 4-6, e identifíquelos como σ y τ. 2 Se señala el esfuerzo dado σ x, (como línea OA) a escala a lo largo del eje de esfuerzos normales (horizontal). Nuevamente, en este ejemplo σ x, es un esfuerzo de tensión (positivo). 3 Se sitúa el esfuerzo σ y (como línea OB) a escala a lo largo del eje de esfuerzos normal. σ y es también un esfuerzo de tensión (positivo) y, por lo tanto, aparece en la misma dirección que σ x, a lo largo del eje de σ. 4 La Figura 4-2 muestra que el par de esfuerzos cortantes τ xy crean un par contra las agujas del reloj sobre el elemento. Este par está equilibrado por el par con las agujas del reloj proporcionado por los esfuerzos cortantes τ yx, Recuerde que ambos esfuerzos cortantes (τ xy y τ yx,), son iguales, de acuerdo con la ecuación 4.2 y positivos, de acuerdo con la regla convencional de signos de esfuerzos. 5 Trazamos una línea vertical hacia abajo de la punta de σ x, (como línea AC) para representar la magnitud a escala de τ xy. Mediante una línea vertical hacia arriba de la punta de σ y (como línea BD) se representa la magnitud a escala de τ yx. 6 El diámetro de un círculo de Mohr es la distancia del punto C al punto D. La línea AB atraviesa a la línea CD. El círculo se dibuja tomando esta intersección como centro. 7 Dos de los tres esfuerzos normales principales se encuentran a continuación en las dos intersecciones que este círculo de Mohr hace con el eje de esfuerzos normales en los puntos P 1, y P 3 : σ 1 = y σ 2 = psi. Si nos detenemos en este momento, el esfuerzo cortante máximo parece ser τ 12 = psi, según queda definido por la proyección de una tangente horizontal desde la parte superior del círculo con el eje de las τ, según se muestra en la Figura 4-6b. 8 Dado que en este ejemplo no hay ningún esfuerzo aplicado en la dirección z, se trata de un estado de esfuerzos en dos dimensiones, y el tercer esfuerzo principal, σ 3, se sabe que es igual a cero, por lo tanto está localizado en el punto 0, también marcado como punto P 3, 9 Todavía quedan dos círculos de Mohr por dibujar. Los tres círculos de Mohr quedan definidos por los diámetros (σ 1 σ 3 ), (σ 1 σ 2 ) y de (σ 2 σ 3 ), los cuales, en este caso, son las líneas P 1 P 3, P 1 P 2 y P 2 P 3, según se observa en la Figura Llevamos líneas tangentes horizontales de la parte de los extremos superior e inferior de cada círculo de Mohr hasta cruzar el eje del cortante (vertical). Esto determina el valor de los esfuerzos cortantes principales, asociados con cada par de esfuerzos normales principales: es decir, τ 13 = , τ 12 = y τ 23 = psi. El mayor de todos éstos es τ máx = , y no el valor que se determinó en el paso Siempre es el círculo que está entre los esfuerzos principales mayor y menor el que determina el esfuerzo cortante máximo. En el ejemplo anterior, el esfuerzo principal igual a cero no era el menor de los tres, porque uno de los esfuerzos principales era negativo. En este ejemplo, el esfuerzo principal igual a cero es el menor. Por lo tanto, si se dejan de dibujar los tres círculos, se hubiera llegado a un error serio en el valor de τ máx.

10

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3). SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el

Más detalles

Capítulo 6. ESFUERZO CORTANTE

Capítulo 6. ESFUERZO CORTANTE Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 6. ESFUERZO CORTANTE 6.1 NOCIONES PREVIAS 6.1.0 Previamente a tratar de las tensiones y deformaciones,

Más detalles

Segundo de Bachillerato Geometría en el espacio

Segundo de Bachillerato Geometría en el espacio Segundo de Bachillerato Geometría en el espacio Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 204-205. Coordenadas de un vector En el conjunto de los vectores libres del espacio el concepto

Más detalles

CINEMATICA DE MAQUINAS

CINEMATICA DE MAQUINAS CINEMATICA DE MAQUINAS 4.1.- CAMPO DE VELOCIDADES EN EL MOVIMIENTO GENERAL DE UN SISTEMA INDEFORMABLE 4.2.- ACELERACION DE UN PUNTO EN EL MOVIMIENTO GENERAL DE UN SISTEMA INDEFORMABLE 4.3.- EJE INSTANTANEO

Más detalles

COORDENADAS CURVILINEAS

COORDENADAS CURVILINEAS CAPITULO V CALCULO II COORDENADAS CURVILINEAS Un sistema de coordenadas es un conjunto de valores que permiten definir unívocamente la posición de cualquier punto de un espacio geométrico respecto de un

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE

Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE 4.1 GENERALIDADES Se dice que una pieza está sometida a flexión pura

Más detalles

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES SUMA DE VECTORES

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES SUMA DE VECTORES GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES SUMA DE VECTORES SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS SUMA DE VECTORES OBJETIVOS Usar la mesa de fuerzas

Más detalles

TRANSFORMACIONES ISOMÉTRICAS

TRANSFORMACIONES ISOMÉTRICAS TRANSFORMACIONES ISOMÉTRICAS En una transformación isométrica: 1) No se altera la forma ni el tamaño de la figura. 2) Sólo cambia la posición (orientación o sentido de ésta). TRANSFORMACIONES ISOMÉTRICAS

Más detalles

MECANICA DE MEDIOS CONTINUOS 2º INGENIERO GEOLOGO

MECANICA DE MEDIOS CONTINUOS 2º INGENIERO GEOLOGO 1.- La chapa rectangular ABCD de la Figura 1 está anclada en el punto A y colgada de la cuerda SC. Determinar la tensión de la cuerda y la fuerza en el punto de anclaje A cuando la chapa soporta una carga

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

Vectores en el espacio

Vectores en el espacio Vectores en el espacio Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas

Más detalles

Tema 6. ELASTICIDAD.

Tema 6. ELASTICIDAD. Tema 6. LASTICIDAD. 6. Introducción. 6.2 sfuero normal. 6.3 Deformación unitaria longitudinal. 6.4 Le de Hooke. 6.5 Deformación por tracción o compresión. Módulo de Young. 6.6 Coeficiente de Poisson. 6.7

Más detalles

**********************************************************************

********************************************************************** 1..- a) Dimensionar la sección de la viga sabiendo que está compuesta por dos tablones dispuestos como se indica en la figura (se trata de hallar a). Tensión admisible de la madera: σ adm, tracción = 50

Más detalles

Unidad V: Integración

Unidad V: Integración Unidad V: Integración 5.1 Introducción La integración es un concepto fundamental de las matemáticas avanzadas, especialmente en los campos del cálculo y del análisis matemático. Básicamente, una integral

Más detalles

Sistemas de vectores deslizantes

Sistemas de vectores deslizantes Capítulo 1 Sistemas de vectores deslizantes 1.1. Vectores. Álgebra vectorial. En Física, se denomina magnitud fsica (o simplemente, magnitud) a todo aquello que es susceptible de ser cuantificado o medido

Más detalles

1. ESCALARES Y VECTORES

1. ESCALARES Y VECTORES 1. ESCLRES Y VECTORES lgunas magnitudes físicas se especifican por completo mediante un solo número acompañado de su unidad, por ejemplo, el tiempo, la temperatura, la masa, la densidad, etc. Estas magnitudes

Más detalles

CÁLCULO PARA LA INGENIERÍA 1

CÁLCULO PARA LA INGENIERÍA 1 CÁLCULO PARA LA INGENIERÍA 1 PROBLEMAS RESUELTOS Tema 3 Derivación de funciones de varias variables 3.1 Derivadas y diferenciales de funciones de varias variables! 1. Derivadas parciales de primer orden.!

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL SISTEMAS DE COORDENADAS En la vida diaria, nos encontramos con el problema de ordenar algunos objetos; de tal manera que es necesario agruparlos, identificarlos, seleccionarlos, estereotiparlos, etc.,

Más detalles

+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado.

+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado. ECUACIONES Y DESIGUALDADES UNIDAD VII VII. CONCEPTO DE ECUACIÓN Una igualdad es una relación de equivalencia entre dos epresiones, numéricas o literales, que se cumple para algún, algunos o todos los valores

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos.

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos. ESTATICA: Rama de la física que estudia el equilibrio de los cuerpos. TIPOS DE MAGNITUDES: MAGNITUD ESCALAR: Es una cantidad física que se especifica por un número y una unidad. Ejemplos: La temperatura

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Introducción al Movimiento Armónico Simple En esta página se pretende que el alumno observe la representación del Movimiento Armónico Simple (en lo que sigue M.A.S.), identificando

Más detalles

REPASO DE VECTORES GRM Semestre 2013-1

REPASO DE VECTORES GRM Semestre 2013-1 REPASO DE VECTORES GRM Semestre 2013-1 Basado en material de Serway-Jewett, Physics, Chapters 3, 6,10; Volume 1. Bauer-Westfall, Fisica para ingeniería y ciencias, caps. 1, 5 y 10, Volumen 1 Tipler-Mosca,

Más detalles

INTRO. VECTORES. NÚM. COMPLEJOS

INTRO. VECTORES. NÚM. COMPLEJOS INTRO. VECTORES. NÚM. COMPLEJOS El presente tema se dedicará al estudio de los conceptos de vectores y números complejos. Se comenzará con un pequeño estudio de los vectores del plano y sus propiedades

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial

Más detalles

Álgebra y Trigonometría CNM-108

Álgebra y Trigonometría CNM-108 Álgebra y Trigonometría CNM-108 Clase 2 Ecuaciones, desigualdades y funciones Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

PROBLEMAS MÉTRICOS. Página 183 REFLEXIONA Y RESUELVE. Diagonal de un ortoedro. Distancia entre dos puntos. Distancia de un punto a una recta

PROBLEMAS MÉTRICOS. Página 183 REFLEXIONA Y RESUELVE. Diagonal de un ortoedro. Distancia entre dos puntos. Distancia de un punto a una recta PROBLEMAS MÉTRICOS Página 3 REFLEXIONA Y RESUELVE Diagonal de un ortoedro Halla la diagonal de los ortoedros cuyas dimensiones son las siguientes: I) a =, b =, c = II) a = 4, b =, c = 3 III) a =, b = 4,

Más detalles

INTERACCIÓN DE UNA CIMENTACIÓN PROFUNDA CON LA ESTRUCTURA

INTERACCIÓN DE UNA CIMENTACIÓN PROFUNDA CON LA ESTRUCTURA INTERACCIÓN DE UNA CIMENTACIÓN PROFUNDA CON LA ESTRUCTURA Fernando MUZÁS LABAD, Doctor Ingeniero de Caminos Canales y Puertos Profesor Titular de Mecánica del Suelo ETSAM RESUMEN En el presente artículo

Más detalles

Actividades recreativas para recordar a los vectores. 1) Representa en un eje de coordenadas las siguientes sugerencias:

Actividades recreativas para recordar a los vectores. 1) Representa en un eje de coordenadas las siguientes sugerencias: Actividades recreativas para recordar a los vectores 1) Representa en un eje de coordenadas las siguientes sugerencias: a) Dibuja un segmento y oriéntalo en sentido positivo. b) Dibuja un segmento y oriéntalo

Más detalles

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO)

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO) Vectores Tema. VECTORES (EN EL PLANO Y EN EL ESPACIO Definición de espacio vectorial Un conjunto E es un espacio vectorial si en él se definen dos operaciones, una interna (suma y otra externa (producto

Más detalles

Escuela Superior Tepeji del Río

Escuela Superior Tepeji del Río Escuela Superior Tepeji del Río Área Académica: Ingenieria Industrial Asignatura: Resistencia de los Materiales Profesor(a):Miguel Ángel Hernández Garduño Periodo: Julio- Diciembre 2011 Asignatura: Resistencia

Más detalles

8 GEOMETRÍA ANALÍTICA

8 GEOMETRÍA ANALÍTICA 8 GEOMETRÍA ANALÍTICA EJERCICIOS PROPUESTOS 8. Las coordenadas de los vértices de un rectángulo son A(, ); B(, 5); C(6, 5), y D(6, ). Halla las coordenadas y representa los vectores AB, BC, CD y DA. Qué

Más detalles

GEOMETRÍA ANALÍTICA 2º Curso de Bachillerato 22 de mayo de 2008

GEOMETRÍA ANALÍTICA 2º Curso de Bachillerato 22 de mayo de 2008 1. Sean los puntos A (1, 0,-1) y B (,-1, 3). Calcular la distancia del origen de coordenadas a la recta que pasa por A y B. Calculemos la recta que pasa por A y B. El vector AB es (1,-1,4) y por tanto

Más detalles

Javier Junquera. Vectores

Javier Junquera. Vectores Javier Junquera Vectores Cómo describir la posición de un punto en el espacio: Sistemas de coordenadas Un sistema de coordenadas que permita especificar posiciones consta de: Un punto de referencia fijo,

Más detalles

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la

Más detalles

PROBLEMAS RESUELTOS TEMA: 3

PROBLEMAS RESUELTOS TEMA: 3 PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado

Más detalles

TEMA: CAMPO ELÉCTRICO

TEMA: CAMPO ELÉCTRICO TEMA: CAMPO ELÉCTRICO C-J-06 Una carga puntual de valor Q ocupa la posición (0,0) del plano XY en el vacío. En un punto A del eje X el potencial es V = -120 V, y el campo eléctrico es E = -80 i N/C, siendo

Más detalles

LA CIRCUNFERENCIA EN EL PLANO CARTESIANO

LA CIRCUNFERENCIA EN EL PLANO CARTESIANO LA CIRCUNFERENCIA EN EL PLANO CARTESIANO Si un hombre es perseverante, aunque sea duro de entendimiento se hará inteligente; y aunque sea débil se transformará en fuerte Leonardo Da Vinci TRASLACION DE

Más detalles

DEPARTAMENTO DE GEOMETRIA ANALITICA SEMESTRE 2016-1 SERIE ÁLGEBRA VECTORIAL

DEPARTAMENTO DE GEOMETRIA ANALITICA SEMESTRE 2016-1 SERIE ÁLGEBRA VECTORIAL 1.-Sea C(2, -3, 5) el punto medio del segmento dirigido AB. Empleando álgebra vectorial, determinar las coordenadas de los puntos A y B, si las componentes escalares de AB sobre los ejes coordenados X,

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

La magnitud vectorial mas simple es el desplazamiento (cambio de posición de un punto a otro de una partícula o de un cuerpo)

La magnitud vectorial mas simple es el desplazamiento (cambio de posición de un punto a otro de una partícula o de un cuerpo) Existen ciertas magnitudes que quedan perfectamente determinadas cuando se conoce el nombre de una unidad y el numero de veces que se ha tomado.estas unidades se llaman escalares (tiempo, volumen, longitud,

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS UNIDAD 3 FUNCIONES TRIGONOMÉTRICAS Concepto clave: 1. Razones trigonométricas Si A es un ángulo interior agudo de un triángulo rectángulo y su medida es, entonces: sen longitud del cateto opuesto al A

Más detalles

EXAMEN DE MATEMÁTICAS 2º BACHILLERATO CCNN BLOQUE : GEOMETRÍA

EXAMEN DE MATEMÁTICAS 2º BACHILLERATO CCNN BLOQUE : GEOMETRÍA EXAMEN DE MATEMÁTICAS 2º BACHILLERATO CCNN BLOQUE : GEOMETRÍA OPCIÓN A EJERCICIO 1 Halle el punto P simétrico del punto P ( 3, 4, 0) respecto del plano Л que contiene a la recta s : x = y 2 = z 1 y al

Más detalles

LA PARABOLA. R(-a, y) P (x, y) con el origen del sistema de coordenadas cartesianas y el eje de la parábola con el

LA PARABOLA. R(-a, y) P (x, y) con el origen del sistema de coordenadas cartesianas y el eje de la parábola con el LA PARABOLA Señor... cuando nos equivoquemos, concédenos la voluntad de rectificar; y cuando tengamos razón... no permitas que nos hagamos insufribles para el prójimo. Marshall En la presente entrega,

Más detalles

5 Geometría analítica plana

5 Geometría analítica plana Solucionario Geometría analítica plana ACTIVIDADES INICIALES.I. Halla las coordenadas del punto medio del segmento de extremos A(, ) y B(8, ). El punto medio es M(, 8)..II. Dibuja un triángulo isósceles

Más detalles

1.1 CANTIDADES VECTORIALES Y ESCALARES. Definición de Magnitud

1.1 CANTIDADES VECTORIALES Y ESCALARES. Definición de Magnitud 1.1 CANTIDADES VECTORIALES Y ESCALARES Definición de Magnitud Atributo de un fenómeno, cuerpo o sustancia que puede ser distinguido cualitativamente y determinado cuantitativamente. También se entiende

Más detalles

CAPÍTULO II. 2 El espacio vectorial R n

CAPÍTULO II. 2 El espacio vectorial R n CAPÍTULO II 2 El espacio vectorial R n A una n upla (x 1, x 2,..., x n ) de números reales se le denomina vector de n coordenadas o, simplemente, vector. Por ejemplo, el par ( 3, 2) es un vector de R 2,

Más detalles

GEOMETRÍA DEL ESPACIO EUCLÍDEO

GEOMETRÍA DEL ESPACIO EUCLÍDEO CAPÍTULO I. GEOMETRÍA DEL ESPACIO EUCLÍDEO SECCIONES 1. Vectores. Operaciones con vectores. 2. Rectas y planos en R 3. 3. Curvas y superficies en R 3. 4. Nociones de topología métrica. 1 1. VECTORES. OPERACIONES

Más detalles

2º Tema.- Ampliación de análisis cinemático de mecanismos planos mediante métodos analíticos.

2º Tema.- Ampliación de análisis cinemático de mecanismos planos mediante métodos analíticos. Universidad de Huelva ESCUELA POLITECNICA SUPERIOR Departamento de Ingeniería Minera, Mecánica y Energética Asignatura: Ingeniería de Máquinas [570004027] 5º curso de Ingenieros Industriales 2º Tema.-

Más detalles

Experimento 2 SUMA DE VECTORES. Objetivos. Teoría. Figura 1 Los vectores se representan con flechas

Experimento 2 SUMA DE VECTORES. Objetivos. Teoría. Figura 1 Los vectores se representan con flechas Experimento 2 SUMA DE VECTORES Objetivos 1. Usar la mesa de fuerzas para equilibrar un punto mediante la aplicación de tres fuerzas concurrentes conocidas 2. Encontrar la resultante de estas fuerzas usando:

Más detalles

UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL SISTEMA DE EDUCACIÓN A DISTANCIA CARRERA DE CIENCIAS DE EDUCACIÓN AREA DE MATEMÁTICAS. Módulo

UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL SISTEMA DE EDUCACIÓN A DISTANCIA CARRERA DE CIENCIAS DE EDUCACIÓN AREA DE MATEMÁTICAS. Módulo UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL SISTEMA DE EDUCACIÓN A DISTANCIA CARRERA DE CIENCIAS DE EDUCACIÓN AREA DE MATEMÁTICAS Módulo TRIGONOMETRÍA Y DIBUJO TÉCNICO Msc. Sexto Nivel Tercera Edición Quito, marzo

Más detalles

CAPÍTULO 2 CO CEPTOS DE RESISTE CIA DE MATERIALES

CAPÍTULO 2 CO CEPTOS DE RESISTE CIA DE MATERIALES CAPÍULO 2 CO CEPO DE REIE CIA DE MAERIALE 2.1 I RODUCCIÓ En este capítulo se presenta una revisión de los aspectos más pertinentes para el curso de Diseño I de la teoría de resistencia de materiales. e

Más detalles

a. Dibujar los paralelogramos completos, señalar los vértices con letras.

a. Dibujar los paralelogramos completos, señalar los vértices con letras. PRACTICO DE VECTORES 1. Dada la siguiente figura, se pide determinar vectores utilizando los vértices. Por ejemplo, el vector, el vector, etcétera. Se pide indicar a. Tres vectores que tengan la misma

Más detalles

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO)

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) TEMA 1: REPRESENTACIÓN GRÁFICA 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) Son dos instrumentos de plástico transparente que se suelen usar de forma conjunta. La escuadra tiene forma de triángulo

Más detalles

Problemas de Campo eléctrico 2º de bachillerato. Física

Problemas de Campo eléctrico 2º de bachillerato. Física Problemas de Campo eléctrico 2º de bachillerato. Física 1. Un electrón, con velocidad inicial 3 10 5 m/s dirigida en el sentido positivo del eje X, penetra en una región donde existe un campo eléctrico

Más detalles

UNIVERSIDAD COMPLUTENSE DE MADRID

UNIVERSIDAD COMPLUTENSE DE MADRID TIEMPO: INSTRUCCIONES GENERALES Y VALORACIÓN 120 minutos INSTRUCCIONES: La prueba consiste en la realización de cinco ejercicios, a elegir entre dos opciones, denominadas A y B. El alumno realizará una

Más detalles

1. Propiedades de la Presión Hidrostática.

1. Propiedades de la Presión Hidrostática. Tema. Hidrostática. ropiedades de la resión Hidrostática.. Ecuación fundamental de la Hidrostática.. resión Hidrostática en los líquidos. Ecuación de equilibrio de los líquidos pesados. ota pieométrica.

Más detalles

Funciones de dos variables. Gráficas y superficies.

Funciones de dos variables. Gráficas y superficies. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Funciones de dos variables. Gráficas y superficies. Puede ser conveniente la visualización en pantalla

Más detalles

Cantidades vectoriales y escalares

Cantidades vectoriales y escalares Solución: Al sustituir las unidades por las cantidades en cada término, tenemos m m, m = ( ) H ^ ist se obtiene m = m + m Con esto se satisfacen tanto la regla 1 como la regla 2. Por tanto, la ecuación

Más detalles

Funciones y gráficas (1)

Funciones y gráficas (1) Funciones y gráficas (1) Introducción Uno de los conceptos más importantes en matemática es el de función. El término función fue usado por primera vez en 1637 por el matemático francés René Descartes

Más detalles

TEMA II ÁLGEBRA VECTORIAL; FUNDAMENTOS. 2.1.- Definicion, notacion y clasificacion de los vectores.

TEMA II ÁLGEBRA VECTORIAL; FUNDAMENTOS. 2.1.- Definicion, notacion y clasificacion de los vectores. J.A DÁVILA BAZ - J. PAJÓN PERMUY CÁLCULO VECTORIAL 29 UNIDAD DIDÁCTICA I: CÁLCULO VECTORIAL. TEMA II ÁLGEBRA VECTORIAL; FUNDAMENTOS 2.1.- Definicion, notacion y clasificacion de los vectores. Un vector

Más detalles

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física ESTATICA Es la parte de la física que estudia las fuerzas en equilibrio. Si sobre un cuerpo no actúan fuerzas o actúan varias fuerzas cuya resultante es cero, decimos que el cuerpo está en equilibrio.

Más detalles

Cap. 24 La Ley de Gauss

Cap. 24 La Ley de Gauss Cap. 24 La Ley de Gauss Una misma ley física enunciada desde diferentes puntos de vista Coulomb Gauss Son equivalentes Pero ambas tienen situaciones para las cuales son superiores que la otra Aquí hay

Más detalles

El espacio tridimensional. Tema 01: Álgebra lineal y geometría en R 3. Vectores. El producto punto o producto escalar. Teorema

El espacio tridimensional. Tema 01: Álgebra lineal y geometría en R 3. Vectores. El producto punto o producto escalar. Teorema El espacio tridimensional Tema 01: Álgebra lineal y geometría en R 3 Juan Ignacio Del Valle Gamboa Sede de Guanacaste Universidad de Costa Rica Ciclo I - 2014 Partimos de los conceptos de punto y vector.

Más detalles

JAVIER ORDUÑA FLORES Red Tercer Milenio

JAVIER ORDUÑA FLORES Red Tercer Milenio 1 Geometría analítica JAVIER ORDUÑA FLORES Red Tercer Milenio GEOMETRÍA ANALÍTICA GEOMETRÍA ANALÍTICA JAVIER ORDUÑA FLORES RED TERCER MILENIO AVISO LEGAL Derechos Reservados 2012, por RED TERCER MILENIO

Más detalles

GEOMETRÍA ANALÍTICA EJERCITARIO DE FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) UNIVERSIDAD NACIONAL DE ASUNCIÓN

GEOMETRÍA ANALÍTICA EJERCITARIO DE FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) UNIVERSIDAD NACIONAL DE ASUNCIÓN UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO DE GEOMETRÍA ANALÍTICA (ÁLGEBRA VECTORIAL - TEORÍA) AÑO 2014 ÁLGEBRA VECTORIAL - EJERCICIOS TEÓRICOS

Más detalles

UNIVERSIDAD VERACRUZANA FACULTAD DE INGENIERÍA MECÁNICA ELÉCTRICA

UNIVERSIDAD VERACRUZANA FACULTAD DE INGENIERÍA MECÁNICA ELÉCTRICA UNIVERSIDAD VERACRUZANA FACULTAD DE INGENIERÍA MECÁNICA ELÉCTRICA PROBLEMAS SELECTOS ESTÁTICA: SISTEMAS EQUIVALENTES Y EQUILIBRIO DE CUERPOS RÍGIDOS MONOGRAFIA Que para obtener el título de: INGENIERO

Más detalles

FUNCIONES 1. DEFINICION DOMINIO Y RANGO

FUNCIONES 1. DEFINICION DOMINIO Y RANGO 1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad

Más detalles

TÉCNICAS GRÁFICAS FUNDAMENTALES.- EJERCICIOS PROPUESTOS

TÉCNICAS GRÁFICAS FUNDAMENTALES.- EJERCICIOS PROPUESTOS TÉCNICAS GRÁFICAS FUNDAMENTALES.- EJERCICIOS PROPUESTOS Los siguientes ejercicios tienen el propósito de hacer que el estudiante use las construcciones geométricas fundamentales y además adquiera práctica

Más detalles

RECTAS Y PLANOS EN EL ESPACIO

RECTAS Y PLANOS EN EL ESPACIO UNIDAD 6 RECTA Y PLANO EN EL EPACIO Página 1 1. Puntos alineados en el plano Comprueba que los puntos A (, ), B (8, ) y C (1, ) no están alineados. A (, ) B (8, ) C (1, ) AB = (, 1); BC = (, ) No tienen

Más detalles

Adición de sistemas de fuerzas coplanares

Adición de sistemas de fuerzas coplanares Adición de sistemas de fuerzas coplanares Ejemplo: Determine magnitud y orientación de la fuerza resultante a) Notación escalar: Fx = Rx Rx = 600 (cos 30) 400 (sen 45) Rx = 236.8 N Fy = Ry Ry = 600 (sen

Más detalles

FUNCION LINEAL. TEOREMA: Toda recta en el plano coordenado es la gráfica de una ecuación de primer grado en dos variables

FUNCION LINEAL. TEOREMA: Toda recta en el plano coordenado es la gráfica de una ecuación de primer grado en dos variables FUNCION LINEAL TEOREMA: Toda recta en el plano coordenado es la gráfica de una ecuación de primer grado en dos variables Toda ecuación de primer grado suele designarse como una ecuación lineal. Toda ecuación

Más detalles

Movimiento en dos y tres dimensiones. Teoría. Autor:

Movimiento en dos y tres dimensiones. Teoría. Autor: Movimiento en dos y tres dimensiones Teoría Autor: YeissonHerney Herrera Contenido 1. Introducción 1.1. actividad palabras claves unid 2. Vector posición 2.1. Explicación vector posición 2.2. Animación

Más detalles

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx.

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx. Conceptos de derivada y de diferencial Roberto C. Redondo Melchor, Norberto Redondo Melchor, Félix Redondo Quintela 1 Universidad de Salamanca 18 de agosto de 2012 v1.3: 17 de septiembre de 2012 Aunque

Más detalles

3º Tema.- Síntesis de mecanismos.

3º Tema.- Síntesis de mecanismos. Universidad de Huelva ESCUELA POLITECNICA SUPERIOR Departamento de Ingeniería Minera, Mecánica y Energética Asignatura: Ingeniería de Máquinas [570004027] 5º curso de Ingenieros Industriales 3º Tema.-

Más detalles

PROBLEMAS DE CINEMÁTICA DE MECANISMOS

PROBLEMAS DE CINEMÁTICA DE MECANISMOS TEORÍA DE MÁQUINAS PROBLEMAS DE CINEMÁTICA DE MECANISMOS Antonio Javier Nieto Quijorna Área de Ingeniería Mecánica E.T.S. Ingenieros Industriales Capítulo 1 GRADOS DE LIBERTAD. 1.1. PROBLEMA. En la figura

Más detalles

Operaciones Booleanas y Compuertas Básicas

Operaciones Booleanas y Compuertas Básicas Álgebra de Boole El álgebra booleana es la teoría matemática que se aplica en la lógica combinatoria. Las variables booleanas son símbolos utilizados para representar magnitudes lógicas y pueden tener

Más detalles

1.- Introducción...1. 2.- Equilibrio y Tensión...9. Equilibrio estático... 9 Concepto de Tensión...10 Tensor de Tensiones...13

1.- Introducción...1. 2.- Equilibrio y Tensión...9. Equilibrio estático... 9 Concepto de Tensión...10 Tensor de Tensiones...13 Índice de contenido 1.- Introducción...1 Algunos enfoques de estudio del sólido real...1 Formas estructurales básicas...3 Materiales... 5 Acciones sobre la estructura...6 Objetivos en el análisis de la

Más detalles

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8 Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

Guía 9 Miércoles 14 de Junio, 2006

Guía 9 Miércoles 14 de Junio, 2006 Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 9 Miércoles 14 de Junio, 2006 Movimiento rotacional

Más detalles

CORRIENTE ALTERNA. Fig.1 : Corriente continua

CORRIENTE ALTERNA. Fig.1 : Corriente continua CORRIENTE ALTERNA Hasta ahora se ha considerado que la corriente eléctrica se desplaza desde el polo positivo del generador al negativo (la corriente electrónica o real lo hace al revés: los electrones

Más detalles

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R.

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R. ALGEBRA LINEAL Héctor Jairo Martínez R. Ana María Sanabria R. SEGUNDO SEMESTRE 8 Índice general. SISTEMAS DE ECUACIONES LINEALES.. Introducción................................................ Conceptos

Más detalles

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA. Escuela de Formación Básica - Departamento de Matemática. Álgebra y Geometría I.

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA. Escuela de Formación Básica - Departamento de Matemática. Álgebra y Geometría I. FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA Escuela de Formación Básica - Departamento de Matemática Álgebra y Geometría I Vectores Raúl D. Katz 2010 1. Introducción Este material es una ampliación

Más detalles

Movimientos en el plano

Movimientos en el plano 7 Movimientos en el plano Objetivos En esta quincena aprenderás a: Manejar el concepto de vector como elemento direccional del plano. Reconocer los movimientos principales en el plano: traslaciones, giros

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 5 Campo eléctrico Ejercicio 1 La masa de un protón es 1,67 10 7 kg y su carga eléctrica 1,6 10 19 C. Compara la fuerza de repulsión eléctrica entre dos protones situados en

Más detalles

Líneas Equipotenciales

Líneas Equipotenciales Líneas Equipotenciales A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. En esta experiencia se estudia

Más detalles

Elementos de álgebra vectorial

Elementos de álgebra vectorial Hier auf glatten Felsenwegen laufe ich tanzend dir entgegen, tanzend wie Du pfeifst und singst : der Du ohne Schiff und Ruder, als der Freiheit frei ster Bruder ueber wilde Meere springst. Friedrich Nietzsche

Más detalles

ANALISIS MATEMATICO II Grupo Ciencias 2015

ANALISIS MATEMATICO II Grupo Ciencias 2015 ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos A. Vectores Hasta el 9 de marzo. Sean v = (0,, ) y w = (,, 4) dos vectores de IR 3. (a) Obtener el coseno

Más detalles

ÁLGEBRA LINEAL - Año 2012

ÁLGEBRA LINEAL - Año 2012 UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS ECONÓMICAS ÁLGEBRA LINEAL - Año 0 Notas de Cátedra correspondientes a la UNIDAD SIETE PROGRAMACIÓN LINEAL * INECUACIONES Se denomina inecuación a

Más detalles

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática CAPITULO Aplicaciones de la Derivada Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Créditos Primera edición impresa: Rosario Álvarez, 1988. Edición Latex: Marieth

Más detalles

AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES

AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES AXIOMASDECUERPO(CAMPO) DELOSNÚMEROSREALES Ejemplo: 6 INECUACIONES 15 VA11) x y x y. VA12) x y x y. Las demostraciones de muchas de estas propiedades son evidentes de la definición. Otras se demostrarán

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO

APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO ÍNDICE VECTORES EN EL PLANO... 3 Vector Fijo... 3 VECTOR LIBRE... 3 Operaciones con Vectores... 3 Suma de vectores... 3 Producto de un número por

Más detalles

Vectores y Valores Propios

Vectores y Valores Propios Capítulo 11 Vectores y Valores Propios Las ideas de vector y valor propio constituyen conceptos centrales del álgebra lineal y resultan una valiosa herramienta en la solución de numerosos problemas de

Más detalles